• Title/Summary/Keyword: Fiber Orientation

Search Result 568, Processing Time 0.031 seconds

A study on structure analysis system for short fiber reinforced plastics (단섬유강화 플라스틱 복합재료 구조해석 기법연구)

  • Youn, Jee-Young;Kim, Sang-Woo;Park, Bong-Hyun;Lee, Seong-Hoon;Kwon, Tai-Hun;Kim, Ki-Tae
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • This paper deals with anisotropic property and structural analysis for short fiber reinforced plastic composites manufactured by the injection molding process. The common approach for modeling this type of material is the consideration of the material as homogenous and isotropic. However, the common isotropy approach often results in unexpected failure. To overcome this, new structure analysis methodology was developed in order to consider fiber orientation effect using injection mold flow analysis and Halpin-Tsai equations for unidirectional composites and taking an orientation average. The numerical predictions are compared to experimental data for tensile specimen. The predicted mechanical properties agree well with experimental data for fiber orientation and weld line effect. The analysis system was also applied to an automobile part. The proposed anisotropic model predicted different mechanical properties by position of the part and different mechanical performance of the part was changed according to injection gate position.

The Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis (사출-구조 연성해석을 통한 Glass Fiber 배향성이 충격 파괴에 미치는 영향)

  • Kim, Woong;Kim, JongRyang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • The use of engineering plastics in automotive components is increasing with the trend towards improving the car strength and reducing weight. Among the different choices of materials, engineering plastic emerged as the necessary material for achieving lower costs, reduced weight and improved production efficiency. To produce the automotive parts, it is important to predict defect and validation of injection molding prior to design. Injection molding analysis and structural analysis are widely applied as a part of the design process when developing automotive parts. Injection molding analysis, in particular, involves a highly complicated mechanism that requires deep knowledge of polymer properties as well as an analytic approach different from that used for a general isotropic material when the molded material is used as a structural material. This is because the parts made of polymer have pre-stress factors such as intrinsic deformation and residual stress. The most important factors for injection molded plastic products are injection molding condition and cavity design, taking into account ease of molding, mass production and application. Despite optimal injection molding conditions and cavity design, however, glass fiber orientation is critically linked to strength reduction. The application of injection molding and structural coupled analysis provides a low-cost solution for product molding and structural validation, all prior to the actual molding. The purpose of this study involves the validation, pre-study, and solution of defect in injection-molded polymer automotive parts using the simulation software for injection molding and structural coupled analysis. Finally, this thesis provides validation of an injection molding and structural coupled analytic mechanism that can demonstrate the effect of glass fiber orientation on mechanical strength. Design improvement ideas for the injection molded product of PPS (Poly Phenylene Sulfide)+40% glass fiber are also suggested.

Fiber Orientation and Warpage of Film Insert Molded Parts with Glass Fiber Reinforced Substrate (유리섬유가 강화된 필름 삽입 사출품의 섬유배향 및 휨)

  • Kim, Seong-Yun;Kim, Hyung-Min;Lee, Doo-Jin;Youn, Jae-Ryoun;Lee, Sung-Hee
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.117-125
    • /
    • 2012
  • Warpage of the film insert molded (FIM) part is caused by an asymmetric residual stress distribution. Asymmetric residual stress and temperature distribution is generated by the retarded heat transfer in the perpendicular direction to the attached film surface. Since warpage was not prevented by controlling injection molding conditions, glass fiber (GF) filled composites were employed as substrates for film insert molding to minimize the warpage. Distribution of short GFs was evaluated by using micro-CT equipment. Proper models for micro mechanics, anisotropic thermal expansion coefficients, and closure approximation should be selected in order to calculate fiber orientation tensor and warpage of the FIM part with the composite substrate. After six kinds of micro mechanics models, three models of the thermal expansion coefficient and five models of the closure approximation had been considered, the Mori-Tanaka model, the Rosen and Hashin model, and the third orthotropic closure approximation were selected in this study. The numerically predicted results on fiber orientation tensor and warpage were in good agreement with experimental results and effects of GF reinforcement on warpage of the FIM composite specimen were identified by the numerical results.

Influence of fiber paths on buckling load of tailored conical shells

  • Naderi, Ali-Asghar;Rahimi, Gholam-Hossein;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.375-387
    • /
    • 2014
  • The purpose of this paper is to propose a method for evaluation of varying stiffness coefficients of tailored conical shells (TCS). Furthermore, a comparison between buckling loads of these shells under axial load with the different fiber path is performed. A circular truncated conical shell subjected to axial compression is taken into account. Three different theoretical path containing geodesic path, constant curvature path and constant angle path has been considered to describe the angle variation along the cone length, along cone generator of a conical shell are offered. In the TCS with the arbitrary fiber path, the thickness and the ply orientation are assumed to be functions of the shell coordinates and influencing stiffness coefficients of the structure. The stiffness coefficients and the buckling loads of shells are calculated basing on classical shells theory (CST) and using finite-element analysis (FEA) software. The obtained results for TCS with arbitrary fiber path, thickness and ply orientation are derived as functions of shell longitudinal coordinate and influencing stiffness coefficients of structures. Furthermore, the buckling loads based on fiber path and ply orientation at the start of tailored fiber get to be different. The extent of difference for tailored fiber with start angle lower than 20 degrees is not significant. The results in this paper show that using tailored fiber placement could be applied for producing conical shells in order to have greater buckling strengths and lower weight. This work demonstrates the use of fiber path definitions for calculated stiffness coefficients and buckling loads of conical shells.

Low Cycle Fatigue of PPS Polymer Injection Welds ( II ) - Fiber Orientation and Fracture Mechanism -

  • Lim, Jae-Kyoo;Song, Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.836-843
    • /
    • 2003
  • The polymer composites contain numerous internal boundaries and its structural elements have different responses and different resistances under the same service environment. Fatigue phenomenon is much more complex in composites than homogeneous materials. An understanding of the fracture behavior of polymer composite materials subjected to constant and cyclic loading is necessary for predicting the life time of structures fabricated with polymers. There is a need to acquire a better understanding of the fatigue performance and failure mechanisms of composites under such conditions. Therefore, in this study the analyses of fiber orientation and fracture mechanism for low cycle fatigue crack have been studied by SEM and LM for observing the ultrathin sections.

Study for Predicting Mechanical Properties Depending on Fiber Orientation in Injection Molded Short-Fiber-Reinforced Plastic Parts (단섬유보강 플라스틱 사풀성형제품의 섬유방향성에 따른 기계적성질 예)

  • 권태헌
    • The Korean Journal of Rheology
    • /
    • v.8 no.2
    • /
    • pp.78-91
    • /
    • 1996
  • 단섬유 보강 플라스틱 복합재료에 사출성형에서 섬유배향은 금형 충전 공정 중의 유동장에 의해 결정되고 섬유의 배향 상태는 역으로 유동장에 영향을 미친다. 단섬유에 의 한 추가적인 응력을 포함하는 Dinh과 Armstrong의 이방성 구성방정식을 충전유동과 섬유 배향의 연계해석에 도입하였다. 충전유동의 해석은 새로운 압력 지배방정식과 에너지 방정 식을 유한요소법과 유한차분법을 이용하여 풀고 동시에 2차 배향 텐서의 변화방정식을 4차 Runge-kutta 방법으로 풀었다. 섬유의 배향상태를 구한 후에 일방향성 복합재료의 Halpin-Tsai 식과 배향 평균모델을 도입하여 사풀성형품의 이방성 기계적 성질이 예측되었 다. 직사각형 캐비티에서 수치해석결과를 실험결과와 비교하였다. 섬유배향과 유동과의 상호 연계작용을 특히 게이트 근처에서 섬유배향에 영향을 미치며 수치해석 결과는 벽면 근처에 서 유동방향으로 배향하는 shell층을 과대 예측함을 알수 있었는데 이는 배향 텐서 변화 방 정식의 최종근사에서 기인하는 오차로 판단된다. 수정된 복합최종 근사를 바탕으로 예측된 이방성 기계적 성질이 기존의 복합최종 근사에 기초한 예측보다 실험 결과에 정량적으로 보 다 잘 일치하였다.

  • PDF