• 제목/요약/키워드: Fiber Orientation

검색결과 568건 처리시간 0.033초

장섬유강화 고분자 복합재료에서 인장강도에 미치는 섬유배향의 영향 (Effect of Fiber Orientation on the Tensile Strength in Long-Fiber Reinforced Polymeric Composites)

  • 이동기;심재기;한길영;김혁;김진우;이정주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.55-60
    • /
    • 2003
  • Case that long-fiber reinforced polymeric composites of fiber orientation situation of a direction state is J=1 that is direction of tensile strength of another state appeared highest. And theoretical tensile strength value of long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state appeared similarly with tensile strength value that long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state. Also, than case that efficiency of fiber orientation situation of long-fiber reinforced polymeric composites is J=1 in it is J=0.1 of fiber orientation situation effect of long-fiber reinforced polymeric composites about 60% high appear.

  • PDF

화상처리에 의한 섬유배향각 분포측정에 있어서 교차점합산법의 정밀도 (Accuracy of Intersection Counting Method in Measurement of Fiber Orientation Angle Distribution Using Image Processing)

  • 이상동;박준식;이동기;한길영;김이곤
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.97-105
    • /
    • 1998
  • The fiber oriented condition inside fiber reinforced composite material is a basic factor of mechanical properties of composite materials. It is very important to meausure the fiber orientation angle for the determination of molding conditions, mechanical characteristics, and the design of composite materials. In the work, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine the accuracy of intersection counting method. The fiber orientation function measured by intersection counting method using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the scanning line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.

  • PDF

FRP의 사출성형에 있어서 섬유배향상태와 섬유함유율분포에 관한 연구 (A Study on the Fiber Orientation and Fiber Content Ratio Distribution during the Injection Molding for FRP)

  • 김진우;이동기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.252-257
    • /
    • 2005
  • Injection molding is a very important industrial process for the manufacturing of plastics objects. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation' orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of weld-line in injection-molded products is assessed. And the effects of fiber content and injection mold-gate conditions on the fiber orientation are also discussed.

  • PDF

농도법에 의한 GFRP 복합재료의 섬유배향각 분포측정 (Measurement of Fiber Orientation-Angle Distribution of Glass Fiber Reinforced Polymeric Composite Materials by Intensity Method)

  • 김혁;안종윤;이동기;한길영;김이곤
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.34-44
    • /
    • 1996
  • In order to examine the accuracy of the intensity method, the fiber orientation-angle distribution of fiber-reinforced polymeric composites is measured using image processing. The fiber orientation function is calculated from the fiber orientation measured by the soft X-ray photograph. Theoretical and experimental results of fiber orientation function are compared for the composites with different fiber contents and fiber orientations. The intensity method is used for the experimental investigation and the measured fiber orientation function is compared to the calculated one. The relations between the measured and the simulated fiber orientation functions $J{\small{M}}$ and $J{\small{S}}$ respectively are identified. For the fiber length of 1.000mm and 2.000mm, it shows that $J{\small{M}}=0.83J{\small{M}}$. However. in general. the value of $J{\small{M}}$ decreases as the fiber length increases. For GFRP composites the relations between $J{\small{M}}$ and theoretical value J show that $J{\small{M}}$=0.73J for short fiber and $J{\small{M}}$=0.81J for long fiber.

  • PDF

Confocal Microscopy Measurement of the Fiber Orientation in Short Fiber Reinforced Plastics

  • Lee, Kwang Seok;Lee, Seok Won;Youn, Jae Ryoun;Kang, Tae Jin;Chung, Kwansoo
    • Fibers and Polymers
    • /
    • 제2권1호
    • /
    • pp.163-172
    • /
    • 2001
  • To determine three-dimensional fiber orientation states in injection-molded short fiber composites a CLSM (Confocal Laser Scanning Microscope) is used. Since the CLSM optically sections the composites, more than two cross-sections either on or below the surface of the composite can be obtained. Three dimensional fiber orientation states can be determined with geometric parameters of fibers on two parallel cross-sections. For experiment, carbon fiber reinforced polystyrene is examined by the CLSM. Geometric parameters of fibers are measured by image analysis. In order to compactly describe fiber orientation states, orientation tensors are used. Orientation tensors are determined at different positions of the prepared specimen. Three dimensional orientation states are obtained without the difficulty in determining the out-of-plane angles by utilizing images on two parallel planes acquired by the CLSM. Orientation states are different at different positions and show the shell-core structure along the thickness of the specimen.

  • PDF

섬유배향각 분포측정에 있어서 농도법의 정밀도에 미치는 섬유종횡비와 면적비의 영향 (Effects of Aspect and Area Ratio of Fiber on the Accuracy of Intensity Method in Measurement of Fiber Orientation-Angle Distribution)

  • 이상동;김혁;이동기;한길영;김이곤
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.953-959
    • /
    • 1998
  • To investigate accuracy of intensity method for measurement of the fiber orientation distribution, fiber orientation function is calculated by drawing simulation figures for the fiber orientation as varying fiber aspect ratio, fiber area ratio, and fiber orientation state, respectively. The values of fiber orientation function measured by intensity method are compared with the calculated values of fiber orientation function. The results show that measurement accuracy of the fiber orientation angle distribution by intensity method is affected by the fiber aspect ratio when the total length of oriented fiber is same. The average gradient of fiber orientation function is 0.94 for 1000mm of the total fiber length and is 0.93 for 2000 mm when the fiber aspect ratio is over 50. Measurement accuracy by intensity method is about 94% and the reliable data can be obtained by intensity method.

단섬유강화 고분자 복합재료에서 사출성형 형상금형 형상변화에 따른 섬유배향상태 (Fiber Orientation of Short Fiber Reinforced Polymeric Composites Depending on Injection Mold Shape Variations)

  • 김혁;한길영;이동기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.778-784
    • /
    • 2001
  • Injection molding is a very important industrial process for the manufacturing of plastics objects. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of weld-line parts in injection-molded products is assessed. And the effects of fiber content and injection molding conditions on the fiber orientation functions are also discussed.

  • PDF

섬유강화 고분자 복합재의 사출성형에 있어서 웰드라인부의 섬유배향측정 (Measurement of the Fiber Orientation on Weld-Line Parts for Injection Molding of Fiber Reinforced Polymeric Composites)

  • 김혁;강명구;최유성;이동기;한길영;김이곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.265-270
    • /
    • 2000
  • Injection molding is a very important industrial process for the manufacturing of plastics objects. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation· orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of weld-line parts in injection-molded products is assessed. And the effects of fiber content and injection molding conditions on the fiber orientation functions are also discussed

  • PDF

Development of a New On-line fiber Orientation Sensor Based on Dielectric Anisotropy

  • Nagata, Shinichi
    • 펄프종이기술
    • /
    • 제34권5호
    • /
    • pp.49-55
    • /
    • 2002
  • A new method is proposed for the on-line measurement of the fiber orientation of sheet materials. The measurement of fiber orientation is very important in manufacturing paper sheets, non-woven fabrics, and glass sheets, because fiber orientation strongly affects product properties represented by, for example, dimensional stability of paper. A method developed in this research utilizes anisotropy of dielectric constants of sheet materials as a key characteristic to determine the fiber orientation. The new on-line sensor, consisting of 5 microwave dielectric resonators set in different directions, was designed to detect the fiber orientation while paper is running with high speed on a paper machine. This sensor can determine the direction and the degree of fiber orientation from the measured direction of the maximal dielectric constant and its variation, respectively. The fundamental performance of this system was examined by the static measurement of printing grade paper, which gave a satisfactory result. Then, the dynamic measurements were done at a speed of 1,000 m/min by using a high-speed test-coating machine.

섬유강화 복합재료 사출성형품의 섬유배향상태 (Fiber Orientation distribution of Injection Molded Product on the Fiber-Reinforced Polymeric Composites)

  • 이정주;김진우;김혁;한길영;심재기;이동기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.76-81
    • /
    • 2004
  • Injection molding is the most widely used process fir the industrial forming of plastic articles. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result. the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experientially. Using the image processing method, the fiber orientation distribution of welding pars in injection-molded products is assessed. And the effects of fiber content and injection mold shapes on the fiber orientation in case of fiber reinforced polymeric composites are studied experimentally.

  • PDF