• 제목/요약/키워드: Fetal liver

검색결과 97건 처리시간 0.022초

Maternal betaine supplementation ameliorates fatty liver disease in offspring mice by inhibiting hepatic NLRP3 inflammasome activation

  • Lun Li;Liuqiao Sun;Xiaoping Liang;Qian Ou;Xuying Tan;Fangyuan Li;Zhiwei Lai;Chenghe Ding;Hangjun Chen;Xinxue Yu;Qiongmei Wu;Jun Wei;Feng Wu;Lijun Wang
    • Nutrition Research and Practice
    • /
    • 제17권6호
    • /
    • pp.1084-1098
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Previous research has shown maternal betaine supplementation alleviates fetal-derived hepatic steatosis. Therefore, this study examined the anti-inflammatory effect of maternal betaine intake in offspring mice and its mechanism. MATERIALS/METHODS: Female C57BL/6J mice and their offspring were randomly divided into 3 groups according to the treatment received during gestation and lactation: control diet (CD), fatty liver disease (FLD), and fatty liver disease + 1% betaine (FLD-BET). The FLD group was given a high-fat diet and streptozotocin (HFD + STZ), and the FLD-BET group was treated with HFD + STZ + 1% betaine. After weaning, the offspring mice were given a normal diet for 5 weeks and then dissected to measure the relevant indexes. RESULTS: Compared to the CD group, the offspring mice in the FLD group revealed obvious hepatic steatosis and increased serum levels of alanine aminotransferase, interleukin (IL)-6, and tumor necrosis factor (TNF)-α; maternal betaine supplementation reversed these changes. The hepatic mRNA expression levels of IL-6, IL-18, and Caspase-1 were significantly higher in the FLD group than in the CD group. Maternal betaine supplementation reduced the expression of IL-1β, IL-6, IL-18, and apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain (ASC). Maternal betaine supplementation also reversed the increasing protein expressions of nitric oxide dioxygenase-like receptor family pyrin domain containing 3 (NLRP3), ASC, Caspase-1, IL-1β, and IL-18 in offspring mice exposed to HFD + STZ. Maternal betaine supplementation decreased the homocysteine (Hcy) and s-adenosine homocysteine (SAH) levels significantly in the livers. Furthermore, the hepatic Hcy concentrations showed significant inverse relationships with the mRNA expression of TNF-α, NLRP3, ASC, and IL-18. The hepatic SAH concentration was inversely associated with the IL-1β mRNA expression. CONCLUSIONS: The lipotropic and anti-inflammatory effect of maternal betaine supplementation may be associated with the inhibition of NLRP3 inflammasome in the livers of the offspring mice.

Corticosteroid가 Streptozotocin 유발 당뇨 흰쥐와 태자에 미치는 영향 (The Effect of Corticosteroid on the Diabetic-Pregnant Rats and Their Fetuses)

  • 정기화;정춘식;주경미
    • Biomolecules & Therapeutics
    • /
    • 제5권3호
    • /
    • pp.253-259
    • /
    • 1997
  • The effect of corticosteroid on the diabetic pregnant rats and their fetuses was investigated. Streptozotocin (STB) was injected into the pregnant rats on the fifth day of pregnancy. Dexamethasone (DXM) was injected into the pregnant rats on the 17th, 18th, 19th and 20th days of pregnancy In prenatal rats, the body weight, an abortion rate, number of fetus, the ratio of lecithin/sphingomyelin (L/S) and the levels of blood glucose and phosphatidylglycerol (PG) were determined. In the postnatal rats, the body weight, the levels of blood glucose, fetal number, stillbirth rate, an organ weight and the levels of hepatic glycogen, protein and triglyceride were determined. The body weight of fetuses was lower in the DXM group and higher in the STZ group than the those of control group. Blood glucose of fetuses produced hypoglycemia in the STZ group compared with the control group. A significant increase in the abortion and stillbirth rates was observed in STZ group. The levels of glycogen, protein and triglyceride in fetus liver and the weight of pancreas were significantly increased in the 572 and STZ+DXM groups compared with the control group. The L/S ratio and the level of PG in the amniotic (quid were significantly decreased in STZ group compared with the control group, whereas those of the STZ+DXM group were similar to the control group. It has been observed that corticosteroid administration on the STZ-induced diabetic rats during final stage of pregnancy can prevent the respiratory depression syndrome of neonatal rats.

  • PDF

Secretory Production of Biologically Active Human Thrombopoietin by Baculovirus Expression System

  • Koh, Yeo-Wook;Lim, Seung-Wook;Park, Seung-Kook;Park, Myung-Hwan;Na, Doe-Sun;Yang, Jai-Myung
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.453-458
    • /
    • 1998
  • Human thrombopoietin (hTPO) was expressed to high levels in insect cells using the baculovirus expression system. Full-length hTPO cDNA containing a native signal peptide sequence was amplified by PCR from a human fetal liver cDNA library and cloned into the Autographa californica nuclear polyhedrosis virus (AcNPV) expression vector. Immunoblot analysis with antiserum against hTPO indicated that an approximately 55 kDa protein was produced in recombinant AcNPV infected insect cells. Recombinant hTPO was produced 4-fold higher in Trichoplusia ni (Tn5) cells than in Spodoptera frugiperda (Sf9) cells. with most of the hTPO produced in Tn5 cells secreted into the culture medium. Addition of tunicamycin in the culture medium resulted in the reduction of the size of hTPO to 35-38 kDa, and most of the protein remained within the cell. These results suggest that N-glycosylation of hTPO is required for the secretion of the protein into the culture medium in insect cells. hTPO produced in insect cells induced proliferation and maturation of megakaryocyte progenitors, indicating that it is in a biologically active form.

  • PDF

A Plausible Method for the Diagnosis of Genetic Disorders Using Full Length cDNA

  • Hur, Hyang-Suk;Lee, Young-Won;Park, Hyoung-Woo;Kim, Myoung-Hee
    • 대한의생명과학회지
    • /
    • 제7권1호
    • /
    • pp.1-5
    • /
    • 2001
  • A cDNA of coagulation Factor IX gene has been screened from the $\lambda$gt11 human fetal liver cDNA library, and used to construct a 2.8-kb full length cDNA after recombining with the N-terminal fragment from pTZ-FIX. Human genomic DNA was isolated, digested with the restriction endonucleases, TaqI, EcoRI, and HindIII, and Southern hybridization was performed using the full length factor IX cDNA as a probe. The hybridized bands generated by the restriction endonucleases were the followings: TaqI, 0.3, 1.0, 1.6, 1.8, 2.7, 3.7, and 5.3 kb bands; EcoRI, 1.8, 4.8, 4.9, 5.5, 6.8, and 12.6 kb bands; HindIII, 4.1, 4.4, 5.2, 5.8, 7.6, and 12.5 kb bands. When the Southern bands were physically mapped along the genome, about 50-kb continuous region harboring almost all of the genomic region of Factor Ⅸ gene was covered. These results suggest a possibility of using an exonal cDNA probe to diagnose abnormalities including large deletions, insertions, and rearrangements along the genome, if there is any.

  • PDF

Pathological description and immunohistochemical demonstration of ovine abortion associated with Toxoplasma gondii in Iran

  • Rassouli, Maryam;Razmi, Golam Reza;Movassaghi, Ahmad Reza;Bassami, Mohammad Reza;Sami, Mehrdad
    • 대한수의학회지
    • /
    • 제53권1호
    • /
    • pp.1-5
    • /
    • 2013
  • The obligatory intracellular protozoan parasite Toxoplasma gondii is a major world wide cause of infectious ovine abortion. In some different diagnostic techniques that are being used to detect this pathogen in ovine fetuses, immunohistochemistry (IHC) is a very sensitive and expensive one. Histopathology is not truly a specific and sensitive test for Toxoplasma infection but it can be helpful to choose some suspected tissues for IHC. In this study 9.5% of 200 samples (aborted ovine fetuses internal organs such as brain, liver, heart, lung, kidney, spleen) (4.6~14.4% with 95% CI) were positive in IHC with a very good logical agreement among different diagnostic techniques (${\kappa}=0.73$, 0.8) and with no significant difference among different fetal age groups (p > 0.05).

Isolation and Functional Examination of the Long Non-Coding RNA Redrum

  • Lee, Yerim;Park, Charny;Lee, Sanghyuk;Lee, Daekee;Kim, Jaesang
    • Molecules and Cells
    • /
    • 제41권2호
    • /
    • pp.134-139
    • /
    • 2018
  • Here, we report isolation of multiple long non-coding RNAs (lncRNAs) expressed tissue-specifically during murine embryogenesis. One of these, subsequently came to be known as Redrum, is expressed in erythropoietic cells in fetal liver and adult bone marrow. Redrum transcription is also detected during pregnancy in the spleen where extramedullary hematopoiesis takes place. In order to examine the function of Redrum in vivo, we generated a gene-targeted murine model and analyzed its embryonic and adult erythropoiesis. The homozygous mutant embryo showed no apparent deficiency or defect in erythropoiesis. Adult erythropoiesis in bone marrow and in the spleen during pregnancy likewise showed no detectable phenotype as red blood cells matured in normal fashion. The phenotype is in contrast to the reported function of Redrum in vitro, and our observation implies that Redrum plays in vivo an accessory or supplementary role whose loss is compatible with normal erythropoiesis.

TRAF6 Distinctly Regulates Hematopoietic Stem and Progenitors at Different Periods of Development in Mice

  • Kim, Hyekang;Lee, Seungwon;Lee, Seung-Woo
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.753-761
    • /
    • 2018
  • Tumor necrosis factor receptor-associated factor 6 (TRAF6) is identified as a signaling adaptor protein that regulates bone metabolism, immunity, and the development of several tissues. Therefore, its functions are closely associated with multiple diseases. TRAF6 is also involved in the regulation of hematopoiesis under steady-state conditions, but the role of TRAF6 in modulating hematopoietic stem and progenitor cells (HSPCs) during the developmental stages remains unknown. Here, we report that the deletion of TRAF6 in hematopoietic lineage cells resulted in the upregulation of HSPCs in the fetal liver at the prenatal period. However, in the early postnatal period, deletion of TRAF6 drastically diminished HSPCs in the bone marrow (BM), with severe defects in BM development and extramedullary hematopoiesis in the spleen being identified. In the analysis of adult HSPCs in a BM reconstitution setting, TRAF6 played no significant role in HSPC homeostasis, albeit it affected the development of T cells. Taken together, our results suggest that the role of TRAF6 in regulating HSPCs is altered in a spatial and temporal manner during the developmental course of mice.

2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate enhances thrombopoietin-induced megakaryocytic differentiation and plateletogenesis

  • Kim, Jusong;Jin, Guanghai;Lee, Jisu;Lee, Kyeong;Bae, Yun Soo;Kim, Jaesang
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.434-438
    • /
    • 2019
  • We have previously reported the effects of 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a synthetic phospholipid, on megakaryocytic differentiation of myeloid leukemia cells. Here, we demonstrate that (R)-TEMOSPho enhances megakaryopoiesis and plateletogenesis from primary hematopoietic stem cells (HSCs) induced by thrombopoietin (TPO). Specifically, we demonstrate at sub-saturation levels of TPO, the addition of (R)-TEMOSPho enhances differentiation and maturation of megakaryocytes (MKs) from murine HSCs derived from fetal liver. Furthermore, we show that production of platelets with (R)-TEMOSPho in combination with TPO is also more efficient than TPO alone and that platelets generated in vitro with these two agents are as functional as those from TPO alone. TPO can thus be partly replaced by or supplemented with (R)-TEMOSPho, and this in turn implies that (R)-TEMOSPho can be useful in efficient platelet production in vitro and potentially be a valuable option in designing cell-based therapy.

Experimental infection of a porcine kidney cell line with hepatitis A virus

  • Dong-Hwi Kim;Da-Yoon Kim;Jae-Hyeong Kim;Kyu-Beom Lim;Joong-Bok Lee;Seung-Yong Park;Chang-Seon Song;Sang-Won Lee;In-Soo Choi
    • 대한수의학회지
    • /
    • 제63권2호
    • /
    • pp.15.1-15.5
    • /
    • 2023
  • The hepatitis A virus (HAV) induces severe acute liver injury and is adapted to human and monkey cell lines but not other cells. In this study, the HAV was inoculated into porcine kidney (PK-15) cells to determine its infectivity in porcine cells. The growth pattern of the HAV in PK-15 cells was compared with its growth pattern in fetal rhesus kidney (FRhK-4) cells. The growth of HAV was less efficient in PK-15 cells. In conclusion, HAV replication was verified in PK-15 cells for the first time. Further investigations will be needed to identify the HAV-restrictive mechanisms in PK-15 cells.

Manipulation of Tissue Energy Metabolism in Meat-Producing Ruminants - Review -

  • Hocquette, J.F.;Ortigues-Marty, Isabelle;Vermorel, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권5호
    • /
    • pp.720-732
    • /
    • 2001
  • Skeletal muscle is of major economic importance since it is finally converted to meat for consumers. The increase in meat production with low costs of production may be achieved by optimizing muscle growth, whereas a high meat quality requires, among other factors, the optimization of intramuscular glycogen and fat stores. Thus, research in energy metabolism aims at controling muscle metabolism, but also liver and adipose tissue metabolism in order to optimize energy partitioning in favour of muscles. Liver is characterized by high anabolic and catabolic rates. Metabolic enzymes are regulated by nutrients through short-term regulation of their activities and long-term regulation of expression of their genes. Consequences of liver metabolic regulation on energy supply to muscles may affect protein deposition (and hence growth) as well as intramuscular energy stores. Adipose tissues are important body reserves of triglycerides, which result from the balance between lipogenesis and lipolysis. Both processes depend on the feeding level and on the nature of nutrients, which indirectly affect energy delivery to muscles. In muscles, the regulation of rate-limiting nutrient transporters, of metabolic enzyme activities and of ATP production, as well as the interactions between nutrients affect free energy availability for muscle growth and modify muscle metabolic characteristics which determine meat quality. The growth of tissues and organs, the number and the characteristics of muscle fibers depend, for a great part, on early events during the fetal life. They include variations in quantitative and qualitative nutrient supply to the fetus, and hence in maternal nutrition. During the postnatal life, muscle growth and characteristics are affected by the age and the genetic type of the animals, the feeding level and the diet composition. The latter determines the nature of available nutrients and the rate of nutrient delivery to tissues, thereby regulating metabolism. Physical activity at pasture also favours the orientation of muscle metabolism, towards the oxidative type. Consequently, breeding systems may be of a great importance during the postnatal life. Research is now directed towards the determination of individual tissue and organ energy requirements, a better knowledge of nutrient partitioning between and within organs and tissues. The discovery of new molecules (e. g. leptin), of new molecular mechanisms and of more powerful techniques (DNA chips) will help to achieve these objectives. The integration of the different levels of knowledge will finally allow scientists to formulate new types of diets adapted to sustain a production of high quality meat with lower costs of production.