• Title/Summary/Keyword: Fetal calvaria

Search Result 13, Processing Time 0.018 seconds

Effects of chitosan on the characteristics of periodontal ligament, calvaria cells and gingival fibroblasts (Chitosan이 치주인대, 두개관 및 치은섬유아세포의 성상에 미치는 영향)

  • Kim, Sun-Hee;Kwon, Young-Hyuk;Lee, Man-Sup;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.1
    • /
    • pp.17-35
    • /
    • 1998
  • Chitosan, with a chemical structure similar to hyaluronic acid, has been implicated as a wound healing agent. The purpose of this research was to evaluate the effects of chitosan on the characteristics of periodontal ligament cells, calvaria cells and gingival fibroblasts and to define the effects of chitosan on bone formation in vitro. In control group, the cells were cultured alone with Dulbecco's Modified Eagle's Medium contained with 10% Fetal bovine serum, 100unit/ml penicillin, $100{\mu}g/ml$ streptomycin, $0.5{\mu}g/ml$ amphotericin-B. In experimental group, chitosan($40{\mu}g/ml$) is added into the above culture condition. And then each group was characterized by examining the cell proliferation at 1,3,5,7,9,12,15 day, the amount of total protein synthesis, alkaline phosphatase activity at 3, 7 day and the ability to produce mineralized nodules of rat calvaria cell at 11 day. The results were as follows : 1. At early time both periodontal ligament cells and calvaria cells in chitosan-treated group proliferated more rapidly than in non-treated control group, but chitosan-treated group of periodontal ligament cells at 9 days and calvaria cells at 12days showed lower growth rate than control group. Gingival fibroblast in chitosan-treated group had lower growth rate than in control group but the difference was not statistically significant (P< 0.01).2. Both periodontal ligament cells and calvaria cells in chitosan-treated group showed much protein synthesis than in control group at 3 days, but showed fewer than in control group at 7 days. Amount of total protein synthesis of gingival fibroblast didn't have statistically significant difference among the two groups(P< 0.01). 3. At 3 and 7 days, alkaline phosphatase activity of periodontal ligament cells and calvaria cells was increased in chitosan-treated group, but at 7 days there was not statistically significant difference among the two groups of calvaria cells (P< 0.01). Alkaline phosphatase activity of gingival fibroblast didn't have statistically significant difference among the two groups(P<0.01). 4. Mineralized nodules in chitosan-treated group of rat calvaria cells were more than in control group. In summery, chitosan had an effect on the proliferation, protein systhesis, alkaline phosphatase activity of periodontal ligament cells and calvaria cells, and facilitated the formation of bone. It is thought that these effects can be used clinically in periodontal regeneration therapy.

  • PDF

The effects of mixed culture of rat periodontal ligament cells and calvaria cells on the calcification (백서의 치주인대세포와 두개관세포의 혼합배양이 석회화과정에 미치는 영향)

  • Kim, Ji-Sook;Park, Joon-Bong;Lee, Man-Sup;Kwon, Young-Hyuk;Herr, Yeek;Lim, Sang-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.923-939
    • /
    • 1997
  • This study was performed to evaluate the effect of mixed culture of rat's calvaria cells and periodontal ligament cells on calcification. These cells have been known to do important role on the periodontal tissue regeneration, especially alveolar bone and cementum. Experimental groups were made which based on the different rate of rat's calvaria cells and periodontal ligament cells, and then these cells were cultured with Dulbecco's Modified Eagle's Medium contained with 10% fetal bovine serum, $50{\mu}g/ml$ ascorbic acid, and 10mM/ ml $Na-{\beta}-glycerophosphate$. Each group was characterized by examining the cell proliferation rate, amount of total protein synthesis, alkaline phosphatase activity, and the number of calcified nodules in vitro. In cell proliferation rate , the cells of control groups were cultured Dulbecco's Modified Eagle's Medium contained with 10 % fetal bovine serum. The results were as follows : 1. The cell proliferation rate in control groups decreased stastically significantly along with the decrease of the rate of bone cells at 7 day and 20 day(P < 0.01). 2. The cell proliferation rate in experimental groups decreased stastically significantly along with decrease of the rate of bone cells at 3 day and 14 day(P < 0.01). 3. The amount of total protein synthesis was significantly decreased along with decrease of the rate of bone cells at 3 day and 6 day(p < 0.01). 4. Alkaline phosphatase activity showed reverse time dependent pattern and was significantly decreased along with decrease of the rate of bone cells during the experimental periods (P < 0.01). 5. Calcified nodules were observed in group 1 (Rat calvaria cells alone) for the first time, and the number of calcified nodule decreased stastically significantly along with the decrease of the rate of bone cells at 12 day(P < 0.01). From the above results, When bone cells and periodontal ligament cells were mixed cultured, the cell proliferation rate was mostly dependent on the actual rate of bone cells and same pattern was showed in amount of total protein synthesis, alkalinephosphatase activity, and the number of calcified nodules. And the calcified nodule forming capacity of bone cells was inhibited by periodontal ligament cells

  • PDF

Comparison of the Proliferation pattern of Cultured Rat Calvaria Cell on the Resorbable Barrier Membrane (흡수성 차폐막에 배양된 구개관세포의 증식양상의 비교)

  • Lee, Chang-Hoon;Lee, Man-Sup;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.2
    • /
    • pp.193-213
    • /
    • 2003
  • The purpose of this study is to evaluate the phenomenon of attachment and spreading of the cultured rat calvarial cell inoculated on their surface of different kinds of biodegradable membrane which had been used on tissue regeneration on periodontal defects by using scanning electron microscope. In this experiment 30 Sprague-Dawley male rats (mean BW 150gm) were used to harvest abundant number of cell in the short period. The rats were sacrificed by decapitatioan to obtain the calvaria for bone cell culture. Calvarial cells were cultured with Dulbecco's Modified Essential Medium contained with 10% Fetal Bovine Serum under the conventional conditions. Biodegradable barrier membrane were collected with collagen type, and were divided into 3 different kind of surface such as scattered, polarized and fine-net type as their surface texture. Microcover plate which usually used for cell culture was used as control for smooth surface. All the membrane were seeded with cultured calvarial cell on their surface. The number of cell inoculated on the membrane were $1{\times}10^6$ Cells/ml. After the culture as designed time, all the membrane were washed with 0.1 M Phosphate Buffered saline and fuxed with 2.5% Glutaraldehyde. And all specimen were treated with $OsO_4$, and Tannic acid before drying the cell for coating the cell with gold. Scanning Electron Microscope was used to observation. The following results were obtained. I. During the whole period of experiment, the phenomenon of cell attachment and spreading were revealed similar pattern to compare with smooth surface culture plate and ordinary culture dish. 2. The shape of cell attachment and spreading on the surface of barrier membrane were observed no remarked difference pattern between smooth surface culture plate and ordinary culture dish. 3. The cytoplasmic process of cultured calvaria cell extent to the deep portion of barrier membrane like as their own proper shape. 4. There were no remarkable relationships between the degree of cultured cell spreading and surface structure of barrier membrane. 5. Slight starified layer of cultured calvaria cell were observed on the scattered type of resorbable membrane, Conclusively, this study thus suggest that cultured bone cell inoculated onto the biodegradable barrier membrane may have an important role of carrier for many cell which could be used as new tissue regeneration, and those tissue engeering technique may become an new method in the approach to the repair of bone defects.

Pharmacological and Biochemical Characterization of Cells Isolated from Fetal Rat Calvaria (백서태자두개관에서 분리한 세포의 약리학적 및 생화학적 특성에 관한연구)

  • Han, Nam-Soo;Cheong, Dong-Kyun;Mori, Masakazu
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.193-207
    • /
    • 1990
  • Transforming growth factor ${\beta}(TGF-{\beta})$ is a multifunctional polypeptide with diverse effects on the proliferation, differentiation and other functions in many cell types. $TGF-{\beta}$ is highly abundant in bone matrix and induces divergent responses in many aspects of bone cell metabolism . Several lines of investigation indicate that matrix-associated $TGF-{\beta}$ is the products of bone cells themselves. However, exact bone cell type reponsible for the production of $TGF-{\beta}$ is still in controversy, The present study was undertaken to determine the cellular origin of matrix-associated $TGF-{\beta}$ and to assess how different bone cells respond to $TGF-{\beta}$. As a prerequisite for this, 5 bone cell populations of distinct phenotype were isolated from fetal calvaria with sequential enzyme digestion protocol and biochemical characterization. Calvarial cell populations released in early stage showed fibroblastic features whereas populations relesed later was enriched with osteoblast-like cell as judged by their acid and alkaline phosphatase activities, cAMP responsiveness to parathyroid hormone, calcitonin and prostaglandin $E_2$ and collagen synthesis rate. By polyacylamide gel and immunoblot analysis of bone and calvarial cell extracts, presence of $TGF-{\beta}$ in bone tissues and production of $TGF-{\beta}$ by bone cells were confirmed again. Subsequent analysis of calvarial cell extracts prepared as individual population revealed that all calvarial cell populations synthesize $TGF-{\beta}$. Exogenously added $TGF-{\beta}$ induced biphasic response upon bone cell proliferation under serum-free condition. In osteoblastic cell populations, it was stimulatory whereas inhibitory in fibroblastic cell populations. In contrast, collagen and noncollagen protein synthesis of all calvarial cell populations were stimulated by $TGF-{\beta}$. Enhancement of protein synthesis was found to be more general rather than specific for collagen synthesis. In addition, effects of $TGF-{\beta}$ on protein synthesis were independent to its effects on cell proliferation. In summary, production of $TGF-{\beta}$ by bone cells and differential actions on various cell populations observed in this study suggest that $TGF-{\beta}$ may play an important role in the regulation of bone metabolism by modulating the specific cellular functions in autocrine and paracrine fashion.

  • PDF

A Study of the Effects of Bone Morphogenetic Protein on the Characteristics of Rat Periodontal Ligament and Calvaria Cells (골형태형성단백질이 백서치주인대세포와 두개관세포에 미치는 영향)

  • Choi, Jin-Keun;Lee, Man-Sup;Kwon, Young-Hyuk;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.4
    • /
    • pp.765-785
    • /
    • 1999
  • Bone morphogenetic protein-2/4 (BMP-2/4) are members of Transforming Growth $Factor-{\beta}\;(TGF-{\beta})$ superfamily and they may differentiate the osteoprogenitor cell and induce formation of cartilage and bone in vivo. This study was performed to investigate the effects of bone morphogenetic protein-2/4 on the characteristics of rat periodontal ligament cells(RPDL) and rat calvaria cells(RCV). In the control group, the cells were cultured alone with Dulbeco's Modified Eagle's Medium contained with 20% fetal bovine serum, $100{\mu}/ml$ penicillin, $100{\mu}/ml$ streptomycin. In the experimental groups, recombinant human bone morphogenetic protein-2/4 (25ng, 100ng, 250ng/ml) were added into the above culture condition. And then each group was characterized by examing the cell proliferation at 1, 2, 3, 5, 7th day, the amount of total protein synthesis and alkaline phosphatase activity at 2, 5, 7th day. And also, the calcified nodule was examed. The results were as follows ; 1 . Both RCV and RPDL cells in both control and experimental groups proliferated during the entire experimental period, but there is no stastically significant difference according to the BMP-2/4 concentration. 2 . Amount of total protein synthesis of both cells in both groups was steadily increased until 5th day, but all experimental groups were significantly different from the control group at 7th day. 3. Alkaline phosphatase activity of both cells in both groups was increased during the entire experiment period. In RCV cells, the experimental group treated with 100ng/ml and 250ng/ml BMP-2/4 were significantly different from the control group at 7th day. In RPDL cells, the experimental group treated with 100ng/ml and 250ng/ml BMP-2/4 were significantly different from the control group at 5th day, and all experimental groups were significantly different from the control group at 7th day. 4. In the both of the cultured Rat Periodontal ligament and calvaria cell treated with BMP-2/4 to compared with control group, it revealed more rapid cell polarization, cell aggregation and hyperchromatic stained on HE agent, and even though only 1 day treated with BMP-2/4 both RPDL and RCV showed more rapid cell reaction than control group. More sensivitve cell reaction of RCV were observed than RPDL in this experiment. From the above results, we could conclude that BMP-2/4 influenced the induction, proliferation and differentiation of bone forming cells

  • PDF

THE EFFECTS OF MECHANICAL STRESS ON CULTURED BONE CELL POPULATIONS (Mechanical stress가 골조직세포군에 미치는 영향)

  • Kim, Sang-Tae;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.105-114
    • /
    • 1994
  • The movement of teeth during orthodontic treatment requires bone remodeling process of bone formation and bone resolution. To find out the changes occuring in the cell itself, mechanical stress was applied to the cell populations involved in the bone metabolism. Bone tissue cell populations were isolated from fetal rat calvaria and divided into OC and OB groups. Following results were obtained from measuring the changes in acid & alkaline phosphatease activity, cyclic AMP and $PGE_2$ production in time lapse after the application of mechanical stress. 1. In case of the marker enzyme of specific bone tissue cell, acid phosphatase activity was high in OC group and alkaline phosphatase activity was high in OB group. 2. After the mechanical stress was applied, acid phosphatase activity was decreased in both OC and OB groups and alkaline phosphatase activity was increase in OB group. 3. When the mechanical stress was applied for 15, 30 and 60 minutes, the production of $PGE_2$ increased in both OC and OB groups, as the time span increased. 4. When the mechanical stress was applied for 20 and 40 minutes, the production of $PGE_2$ increased in both OC and OB groups, as the time span increased.

  • PDF

THE EFFECT OF TENSILE FORCE ON DNA AND PROTEIN SYNTHESIS IN BONE CELLS (인장력이 골조직 세포군의 DNA 및 단백합성에 미치는 영향)

  • Kwon, Oh-Sun;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.933-943
    • /
    • 1994
  • The present study was undertaken to determine the effect of tensile force on DNA and protein biosynthesis in bone cells, and to identify the cell type(s) which primarily respond to external physical force among the heterogenous bone cell populations. As a prerequisite for this study, two bone cell populations which retain fibroblastic and osteoblastic feature were isolated from fetal rat calvaria with sequential enzyme digestion scheme. Tensile force was delivered to each bone cell population by two acrylic resin plates connected with a orthodontic expansion screw during culture period. Rate of DNA and protein synthesis in each bone cell population were assessed by the incorporated radioactivity of $[^3H]-thymidine$ into DNA and $[^3H]-proline$ into fraction of collagenase-digestible protein and noncollagenous protein, respectively. DNA synthesis of osteoblast-like calvarial cell populations was increased significantly by the application of tensile force for 24 hours. In contrast, no alteration in DNA synthesis of fibroblast-like populations could be observed in response to applied force. Tensile force induced the change in protein synthesis of bone cell populations with the same pattern. Total protein and collagen synthesis were increased whithin 24 hours in osteoblast-like populations, but not in fibroblast-like populations by tensile force application. These findings indicate that physical force can affect cellullar activity of the particular cell population, not all cell Populations residing in bone and osteoblasts respond more sensitively than fibroblasts. So osteoblasts can modulate the behavior of other bone cells including osteoclasts by producing several local regulating factors of bone metabolism. In this context, preferential responsiveness of osteoblasts to applied tensile force observed in this study suggests that osteoblasts may play an important role in regulation of physical force-induced remodelling process.

  • PDF

THE EFFECT OF SODIUM FLUORIDE ON THE PHYSIOLOGICAL ROLE OF OSTEOBLASTIC CELL (불화나트륨이 조골세포의 생리적 활성에 미치는 영향)

  • Kim, Dae-Eop
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.3
    • /
    • pp.635-648
    • /
    • 1998
  • The clinical use of fluoride with a well known osteogenic action in osteoporotic patients is rational, because this condition is characterized by impaired bone formation. However, its anabolic effect has not been demonstrated well in vitro. The purpose of this study was to investigate the effects of sodium fluoride on the physiological role of osteoblastic cell. Osteoblastic cells were isolated from fetal rat calvaria. The results were as follows : 1. Mineralized nodules were shown in osteoblastic cell cultures, which had been maintained in the presence of ascorbic acid and ${\beta}-glycerophosphate$ up to 21 days. When cultures were treated with pulses of 48 hr duration before apparent mineralization was occurring, 2-fold increased in their number was detected. 2. Alkaline phosphatase activity of osteoblastic cells was inhibited by sodium fluoride in dose dependent manner. 3. The effect of sodium fluoride on the osteoblastic cell proliferation was measured by the incorporation of $[^3H]$-thymidine into DNA. As a result, sodium fluoride at $1{\sim}100{\mu}M$ increased the $[^3H]$-thymidine incorporation into DNA in a dose dependent manner. 4. The signaling mechanism activated by sodium fluoride dose-dependently enhanced the tyrosine phosphorylation of the adaptor molecule $Shc^{p66}$ and their association with Grb2, one of earlier events in a MAP kinase activation pathway cascade used by a significant subset of G protein-coupled receptors. 5. The phosphorylation of CREB(cAMP response element binding protein)was inhibited by the sodium fluoride in MC3T3E1 cells. In conclusion, the results of this study suggested that the mitogenic effect of the sodium fluoride in MC3T3E1 cell was stimulated in a dose-dependent manner and suggested "an important role for the interaction between She and Grb2" in controlling the proliferation of osteoblasts.

  • PDF

Effect of Calvarial Cell Inoculated Onto the Biodegradable Barrier Membrane on the Bone Regeneration (흡수성 차폐막에 접목된 두개관골세포의 골조직 재생에 미치는 영향)

  • Yu, Bu-Young;Lee, Man-Sup;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.483-509
    • /
    • 1999
  • Biodegradable barrier membrane has been demonstrated to have guided bone regeneration capacity on the animal study. The purpose of this study is to evaluate the effects of cultured calvarial cell inoculated on the biodegradable barrier membrane for the regeneration of the artificial bone defect. In this experiment 35 Sprague-Dawley male rats(mean BW 150gm) were used. 30 rats were divided into 3 groups. In group I, defects were covered periosteum without membrane. In group II, defects were repaired using biodegradable barrier membrane. In group III, the defects were repaired using biodegradable barrier membrane seeded with cultured calvarial cell. Every surgical procedure were performed under the general anesthesia by using with intravenous injection of Pentobarbital sodium(30mg/Kg). After anesthesia, 5 rats were sacrificed by decapitation to obtain the calvaria for bone cell culture. Calvarial cells were cultured with Dulbecco's Modified Essential Medium contained with 10% Fetal Bovine Serum under the conventional conditions. The number of cell inoculated on the membrane were $1{\times}10^6$ Cells/ml. The membrane were inserted on the artificial bone defect after 3 days of culture. A single 3-mm diameter full-thickness artificial calvarial defect was made in each animal by using with bone trephine drill. After the every surgical intervention of animal, all of the animals were sacrificed at 1, 2, 3 weeks after surgery by using of perfusion technique. For obtaining histological section, tissues were fixed in 2.5% Glutaraldehyde (0.1M cacodylate buffer, pH 7.2) and Karnovsky's fixative solution, and decalcified with 0.1M disodium ethylene diaminetetraacetate for 3 weeks. Tissue embeding was performed in paraffin and cut parallel to the surface of calvaria. Section in 7${\mu}m$ thickness of tissue was done and stained with Hematoxylin-Eosin. All the specimens were observed under the light microscopy. The following results were obtained. 1 . During the whole period of experiment, fibrous connective tissue was revealed at 1week after surgery which meant rapid soft tissue recovery. The healing rate of defected area into new bone formation of the test group was observed more rapid tendency than other two groups. 2 . The sequence of healing rate of bone defected area was as follows ; test group, positive control, negative control group. 3 . During the experiment, an osteoclastic cell around preexisted bone was not found. New bone formation was originated from the periphery of the remaing bone wall, and gradually extended into central portion of the bone defect. 4 . The biodegradable barrier membrane was observed favorable biocompatibility during this experimental period without any other noticeable foreign body reaction. And mineralization in the newly formed osteoid tissue revealed relatively more rapid than other group since early stage of the healing process. Conclusively, the cultured bone cell inoculated onto the biodegradable barrier membrane may have an important role of regeneration of artificial bone defects of alveolar bone. This study thus demonstrates a tissue-engineering the approach to the repair of bone defects, which may have clinical applications in clinical fields of the dentistry including periodontics.

  • PDF

EFFECT OF INTERLEUKIM-10 ON THE BONE RESORPTION INDUCED BY INTERLEUKIN-1B (Interleukin-10 이 $interleukin-1{\beta}$로 유도되는 골흡수에 미치는 효과)

  • Yu, Yun-Jung;Kang, Yun-Sun;Lee, Syng-Ill
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.321-339
    • /
    • 1994
  • The cytokines released by osteoblasts induce bone resorption via the differentiation of osteoclast precursors. In this process, $interleukin-1{\beta}$($IL-1{\beta}$)-induced bone resorption is mediated by granulocyte macrophage-colony stimulation factor(GM-CSF), interleukin-6 (IL-6), and tumor necrosis factor ${\alpha}$($TNF-{\alpha}$) released from osteoblasts. Since these cytokines (GM-CSF, IL-6, $TNF-{\alpha}$) are produced by not only osteoblasts but also monocytes, and interleukin-10(I1-10) inhibits the secretion of these cytokines from monocytes, it may be speculated that IL 10 could modulate the production of GM-CSF, IL-6, and $TNF-{\alpha}$ by osteoblasts, then control $IL-1{\beta}-induced$ bone resorption. Therefore, the aims of the present study were to examine the effects of IL-10 on bone resorption. The sixten or seventeen-day pregnant ICR mice were injected with $^{45}Ca$ and sacrificed one day after injection. Then fetal mouse calvaria prelabeled with $^{45}Ca$ were dissected out. In order to confirm the degree of bone resorption, mouse calvaria were treated with Lipopolysaccharide(LPS), $TNF-{\alpha}$, $IL-1{\alpha}$, IL-8, $IL-1{\beta}$, and $IL-1{\alpha}$, Then, IL-10 and $interferon-{\gamma}$ ($IFN-{\gamma}$) were added to calvarial medium, in an attempt to evaluate the effect of $IL-1{\beta}-induced$ bone resorption. In addition, osteoclasts formation in bone marrow cell cultures, and the concentration of IL-6, $TNF-{\alpha}$, and GM-CSF produced from mouse calvarial cells were investigated in response to $IL-1{\beta}$ alone and simultaneously adding f $IL-1{\beta}$ and IL-10. The degree of bone resorption was expressed as the ratio of $^{45}Ca$ release(the treated/the control). The osteoclasts in bone marrow cultures were indentified by tartrate resistant acid phosphatase(TRAP) stain and the concentration of the cytokines was quantified using enzyme linked immunosorbent method. As results of these studies, bone resorption was induced by LPS(1 ng/ml ; the ratio of $^{45}Ca$ release, $1.14{\pm}0.07$). Also $IL-1{\beta}$(1 ng/ml), $IL-1{\alpha}$(1 ng/ml), and $TNF-{\alpha}$(1 ng/ml) resulted in bone resorption(the rations of $^{45}Ca$ release, $1.61{\pm}0.26$, $1.77{\pm}0.03$, $1.20{\pm}0.15$ respectively), but IL-8 did not(the ratio of $^{45}Ca$ release, $0.93{\pm}0.21$). The ratios of $^{45}Ca$ release in response to IL-10(400 ng/ml) and $IFN-{\gamma}$(100 ng/ml) were $1.24{\pm}0.12$ and $1.08{\pm}0.04$ respectively, hence these cytokines inhibited $IL-1{\beta}$(1 ng/ml)-induced bone resorption(the ratio of $^{45}Ca$ release $1.65{\pm}0.24$). While $IL-1{\beta}$(1 ng/ml) increased the number of TRAP positive multinulcleated cells in bone marrow cultures($20{\pm}11$), simultaneously adding $IL-1{\beta}$(1 ng/ml) and IL-10(400 ng/ml) decreased the number of these cells($2{\pm}2$). Nevertheless, IL-10(400 ng/ml) did not affect the IL-6, GM-CSF, and $TNF-{\alpha}$ secretion from $IL-1{\beta}$(1 ng/ml)-activated mouse calvarial cells. From the above results, it may be suggested that IL-10 inhibites $IL-1{\beta}-induced$ osteoclast differntiation and bone resorption. However, the inhibitory effect of IL-10 on the osteoclast formation seems to be mediated not by the reduction of IL-6, GM-CSF, and $TNF-{\alpha}$ production, but by other mechanisms.

  • PDF