• Title/Summary/Keyword: Fes

Search Result 256, Processing Time 0.027 seconds

A Study on an Automatic FES Control System for Paraplegic Walking Against Muscle Fatigue (근육피로도를 고려한 하반신 마비환자의 보행 자동제어 FES 시스템에 관한 연구)

  • Min, Byoung-Gwan;Kim, Jong-Weon;Kim, Sung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.167-174
    • /
    • 1994
  • In this paper, a DSP and microcomputer-based EMG controlled functional electrical stimulation (FES) system, for restoring walking of paraplegics at the patients' own command, is presented. The above-lesion EMG is a time-varying nonstationary signal and its autoregressive (AR) parameters are identified by the nonstationary identification algorithm using a DSP chip. The identified AR parameters are used for the cloassification of the function and the control of the movement. The below-lesion response-EMG signal is used as a measure of muscle fatigue. This FES system is designed to measure muscle fatigue and control the stimulation intensity according to the amplitude of the response-EMG signal. While the automatic electrical intensity control is obtained by identifying the movement, the proposed FES system is suitable for the automatic control of paraplegic walking.

  • PDF

The Effect of PNF and FES Treatment of Combined on Gait Ability in Stroke Patients with Hemiparetic (PNF 통합패턴과 FES 병행이 뇌졸중 환자의 보행에 미치는 영향)

  • Song, Myung-Soo;Noh, Hyun-Jeong;Kim, Sang-Soo;Kang, Tae-Woo
    • PNF and Movement
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 2011
  • Purpose : The purpose of this research was to determine the effects of Proprioceptive Neuromuscular Facilitation(PNF) and Functional Electrical Stimulation(FES) of combined on gait ability in hemiplegic gait. Methods : The subjects of this study were 13 hemiplegic patients. Each subjects was taken PNF pattern and FES of combined with 5 times per week for 4weeks. Pre- and Post-intervention change in gait ability were measured using an Timed up and Go test, stride length of the affected side, step length of the affected side. The data were analyzed using the paired t-test. Results : The results of this study were showed significantly improvement in TUG, stride length of the affected side, step length of the affected side after intervention. Conclusion : These results suggest that the Proprioceptive Neuromuscular Facilitation(PNF) and Functional Electrical Stimulation(FES) of combined exercise is an effective way of improving gait ability for hemiplegic patients.

The effect of lower limb muscle synergy analysis-based FES system on improvement of the foot drop of stroke patient during walking: a case study (하지 근육 시너지 분석 기반의 FES 시스템이 보행 시 뇌졸중 환자의 족하수 개선에 미치는 영향: 사례 연구)

  • Lim, Taehyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.523-529
    • /
    • 2020
  • Foot drop is a common symptom in stroke patients due to central nervous system (CNS) damage, which causes walking disturbances. Functional electrical stimulation (FES) is an effective rehabilitation method for stroke patients with CNS damage. Aim of this study was to determine the effectiveness of 6 weeks FES walking training based lower limb muscle synergy of stroke patients. Lower limb muscle synergies were extracted from electromyography (EMG) using a non-negative matrix factorization algorithm (NMF) method. Cosine similarity and cross correlation were calculated for similarity comparison with healthy subjects. In both stroke patients, the similarity of leg muscle synergy during walking changed to similar to that of healthy subjects due to a decrease in foot drop during. FES walking intervention influenced the similarity of muscle synergies during walking of stroke patients. This intervention has an effective method on foot drop and improving the gait performance of stroke patients.

Effect of Early Ankle Exercise with Functional Electrical Stimulation on Strength and Range of Motion of Ankle in Patients with Stroke (기능적 전기자극을 이용한 조기 발목재활운동이 급성기 뇌졸중 환자의 발목 근력과 가동범위에 미치는 영향)

  • Kim, Chang-Heon;Kang, Tae-Woo
    • PNF and Movement
    • /
    • v.12 no.3
    • /
    • pp.159-165
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate the effect of early ankle exercise with functional electrical stimulation(FES) on spasticity, strength and active range of motion of ankle in patients with stroke. Methods: This study included 21 patients with stroke, who were performed early ankle exercise combined FES. The exercise program comprised 5 sessions of 30 minutes per week for 4 weeks. The spasticity, strength and active range of motion of ankle were evaluated before and after training. The spasticity was measured by modified ashworth scale(MAS), strength of ankle was measured by hand-held dynamometer and active range of motion of ankle dorsi-flexion was measured by goniometer. All data were analyzed using SPSS 18.0. Results: Significant differences were observed the subjects for strength of ankle and active range of motion. The results of the study were as follow: strength of ankle was significantly increased subjects(p<.001) and active range of motion was significantly increased subjects(p<.001). Conclusion: Ankle is very important part of body in stroke patients. early ankle exercise with FES is effective for improvement of strength of ankle and active range of motion in patients with stroke. ealry ankle exercise with FES about stroke patient is very useful and effective. It is effective in clinical practice.

The Effects of Action Observation with Functional Electrical Stimulation on Corticomuscular Coherence

  • Kim, Ji Young;Ryu, Young Uk;Park, Jiwon
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.6
    • /
    • pp.365-371
    • /
    • 2020
  • Objective: To investigate the action observation effects of functional electrical stimulation (FES) on the communication between motor cortex and muscle through corticomuscular coherence (CMC) analysis. Methods: Electroencephalogram (EEG) and electromyogram (EMG) of 27 healthy, nonathlete subjects were measured during action observation, FES, and action observation with FES, which lasted for 7sper session for 10 times. All trials were repeated for 30 times. Simultaneously measured EEG raw data and rectified EMG signals were used to calculate CMC. Only confidence limit values above 0.0306 were used for analysis. CMC was divided into three frequency domains, andthe grand average coherence and peak coherence were computed. Repeated ANOVA was performed to analyze the coherence value difference for each condition's frequency band. Results: CMC showed significant differences in peak coherence and average coherence between the conditions (p<0.05). Action observation application with FES in all frequency band showed the highest peak and average coherence value. Conclusions: The results of this study are assumed to be the combination of increased eccentric information transfer from the sensorymotor cortex by action observation and an increased in concentric sensory input from the peripheral by the FES, suggesting that these are reflecting the sensorimotor integration process.

A Functional Electrical Stimulation System Employing a V40 Microprocessor for Paralyzed Extremities (V40 마이크로프로세서를 이용한 마비기능복원용 전기자국장치의 개발)

  • 임영철;류영재;김이곤;조경영;박철수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.679-686
    • /
    • 1994
  • This paper describes an improved FES system to restorp paralyzed extremities in spinal-cord-injured patients. By using time-division method in the proposed FES system, we can reduce the size and weight of system despite of increasing channels. We designed a DC-DC converter to adapt the condition of each patient. We could reduce the cost by using easily available apparatus like an IBM-PC for the stimulus-pattern-creating system and standardized parts for the protable FES system.

Separating VNF and Network Control for Hardware-Acceleration of SDN/NFV Architecture

  • Duan, Tong;Lan, Julong;Hu, Yuxiang;Sun, Penghao
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.525-534
    • /
    • 2017
  • A hardware-acceleration architecture that separates virtual network functions (VNFs) and network control (called HSN) is proposed to solve the mismatch between the simple flow steering requirements and strong packet processing abilities of software-defined networking (SDN) forwarding elements (FEs) in SDN/network function virtualization (NFV) architecture, while improving the efficiency of NFV infrastructure and the performance of network-intensive functions. HSN makes full use of FEs and accelerates VNFs through two mechanisms: (1) separation of traffic steering and packet processing in the FEs; (2) separation of SDN and NFV control in the FEs. Our HSN prototype, built on NetFPGA-10G, demonstrates that the processing performance can be greatly improved with only a small modification of the traditional SDN/NFV architecture.