• 제목/요약/키워드: Ferrous iron oxidation

검색결과 54건 처리시간 0.021초

석회석을 이용한 지하수 철분 산화 (Iron Oxidation using Limestone in Groundwater)

  • 심상준;강창덕;이지훤;조영상
    • 대한환경공학회지
    • /
    • 제22권1호
    • /
    • pp.73-81
    • /
    • 2000
  • 지하수 내의 철분 제거를 위해 일반적으로 포기법과 화학적 산화제를 이용한 산화법이 이용된다. 특히 오염수 포기에 이은 고-액 여과 분리 공정은 가장 널리 이용되는 물리 화학적 처리법이다. 이 방법은 주로 pH 6.5 이상의 경우 산화 제1철의 불용화에 매우 효과적인 것으로 알려져 있다. 본 연구에서는 석회석을 일정한 포기 하에 오염수와 접촉시켜 pH를 6.5 이상으로 유지하였다. 회분식 실험에서 석회석 입도 크기, 초기 철분 농도, pH, 온도 및 이온 세기 등에 의한 산화 제1철의 산화속도 변화를 고찰하였다. 석회석의 입도가 감소할수록 pH의 증가가 두드러지며 철분 산화 또한 급격히 증가함을 알 수 있었다. 산화 제1철의 산화속도는 초기 철분 농도, 온도 및 이온세기에 비례하는 것으로 나타났다.

  • PDF

철분 강화 식품첨가제용 리포좀의 제조 및 특성 (Preparation and Characterization of Liposome for Iron-Fortified Food Additive)

  • 이종우;전수진
    • 한국식품영양과학회지
    • /
    • 제33권5호
    • /
    • pp.864-868
    • /
    • 2004
  • 철분은 생체 내에서 이루어지는 거의 모든 대사에 필수적인 성분이지만, 식음에 포함된 철분의 양은 극히 적어서 철분강화에 대한 연구가 꾸준히 진행되어 왔다. 이에 따라, 철분공여물질을 함유한 리포즘을 이용하여 철분 강화 식품첨가제를 개발하였다. 철분공여물질로 ferrous sulfate와 hemin을 사용하였으며, 이러한 철분 함유 리포좀을 제조하는데 가장 큰 문제점은 ferrous sulfate의 자체 산화와 ferrous sul fate와 hemin으로 인한 리포좀의 지질산화로 지적되었다 또한, ferrous sulfate에 의한 리포좀의 산화 정도는 hemin의 경우보다 낮은 것으로 관찰되었다. Ferrous sulfate의 자동 산화를 억제하기 위하여 수용성 항산화제인 ascorbic acid가 첨가되었으나, 첨가된 ascorbic acid는 ferrous sulfate와 hemin을 함유한 리포좀의 산화를 억제시키지 못했으며, 오히려 ferrous sulfate에 의한 리포좀의 산화를 촉진시키는 것으로 관찰되었다 여기에 지용성 항산화제인 $\alpha$-tocopherol을 추가적으로 첨가함으로써, ferrous sulfate의 자동산화를 억제하고 hemin과 ferrous sulfate에 의한 리포좀의 산화가 억제된 철분 함유 리포좀이 제조되었다.

살균방법이 철분강화 우유의 저장중 품질변화에 미치는 영향 (Effect of Sterilizing Method on the Quality Change of Iron Fortified Market Milk during Storage)

  • 김윤지;김기성
    • 한국식품영양과학회지
    • /
    • 제28권4호
    • /
    • pp.755-759
    • /
    • 1999
  • To evaluate the effect of sterilizing method on the quality of iron fortified market milk, HTST(high temperature, short time) or LTLT(low temperture, long time) method was adopted after addition of 100ppm ferrous sulfate, ferric citrate, ferric ammonium citrate, or ferrous lactate in market milk. Sterilized iron fortified market milk was stored at 4oC and then pH, lipid oxidation, color change, and sensory quality were observed. The range of pH change in iron fortified market milk sterilized by HTST or LTLT was 6.51~6.74. The order of pH was control>ferric ammonium citrate>ferrous lactate>ferrous sulfate>ferric citrate. Oxygen consumption of ferric ammonium citrate and ferric citrate was lower than ferrous lactate and ferrous sulfate. This trend was same in HTST and LTLT method, but generally oxygen consumption was lower in iron fortified market milk sterilized by LTLT method than by HTST. In total color change, ferrous lactate treatment was closer to control than other treatments. Also sensory characteristics of ferrous lactate treatment was showed better quality than other treatment. From these results, LTLT method was more suitable than HTST method for iron fortified market milk and ferrous lactate was comparably suitable among iron salts used in this study.

  • PDF

Effect of Batch Melting Temperature and Raw Material on Iron Redox State in Sodium Silicate Glasses

  • Mirhadi, Bahman;Mehdikhani, Behzad
    • 한국세라믹학회지
    • /
    • 제48권2호
    • /
    • pp.117-120
    • /
    • 2011
  • In this study, the redox state of iron in sodium silicate glasses was varied by changing the melting conditions, such as the melting temperature and particle size of iron oxide. The oxidation states of the iron ion were determined by wet chemical analysis and UV-Vis spectroscopy methods. Iron commonly exists as an equilibrium mixture of ferrous ions, $Fe^{2+}$, and ferric ions $Fe^{3+}$. In this study, sodium silicate glasses containing nanoparticles of iron oxide (0.5% mol) were prepared at various temperatures. Increase of temperature led to the transformation of ferric ions to ferrous ions, and the intensity of the ferrous peak in 1050 nm increased. Nanoparticle iron oxide caused fewer ferrous ions to be formed and the $\frac{Fe^{2+}}{Fe^{3+}}$ equilibrium ratio compared to that with micro-oxide iron powder was lower.

Degradation of Phenol with Fenton-like Treatment by Using Heterogeneous Catalyst (Modified Iron Oxide) and Hydrogen Peroxide

  • Lee, Si-hoon;Oh, Joo-yub;Park, Yoon-chang
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권4호
    • /
    • pp.489-494
    • /
    • 2006
  • Goethite, hematite, magnetite and synthesized iron oxide are used as catalysts for Fenton-type oxidation of phenol. The synthesized iron oxides were characterized by X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR). The catalytic activity of these materials is classified according to the observed rate of phenol oxidation. The effectiveness of the catalysts followed the sequence: ferrous ion > synthesized iron oxide >> magnetite hematite > goethite. According to these results, the most effective iron oxide catalyst had the structure similar to natural hematite. The surface oxidation state of the catalyst was between magnetite and hematite (+2.5 ~ +3.0). Phenol degraded completely in 40 min at neutral pH (pH = 7). Soluble ferric and ferrous ions were not detected in the filtrate from Fenton reaction solution by AAS. The formation of hydroxyl radicals was confirmed by EPR.

광택 니켈 도금속에 미치는 이가식 이온의 영향 (The Effects of Ferrous Ion on Properties of Bright Nickel Electordeposit)

  • 육기진;여운관;박룡진
    • 한국표면공학회지
    • /
    • 제15권4호
    • /
    • pp.218-225
    • /
    • 1982
  • The effects of ferrous ion on the properties of bright nickel electrodeposit were exa-mined. Iron exists as ferrous ion (Fe+2) and ferric ion (Fe+3) in the bath, a portion of the former tend to be oxidized to the somewhat harmful ferric ion. Iron was added to bath as the ferrous sulfate, ferrous ion prevented from the oxidation with citric acid. It was found that the hardness was increased as the concentration of ferrous ion, the ductility was slightly increased too. The appearance can obtain the wide bright deposits within 4g/$\ell$. The corrosion resistance drastically dropped from 5g/$\ell$ In the case of considering the effect of ferrous ion on the corrosion resistance and the appearance, the allowable limits is 4g/$\ell$, if the reductant is used.

  • PDF

Fe ion과 활성산소 관련 지방산화반응에 미치는 솔잎 추출물의 영향 (Effect of Pine Needle Extract on Fe ion and Active Oxygen Related Lipid Oxidation in Oil Emulsion)

  • 김수민;조영석
    • 한국식품저장유통학회지
    • /
    • 제6권1호
    • /
    • pp.115-120
    • /
    • 1999
  • This study was carried out to investigate the effect of Pine needle extract on lipid oxidation and free radical reaction in iron sources reacted with active oxygen species. The results were summarized as follow; The pine needle extracts didn`t show a distinct effect on reduction of lipid oxidation if the iron ion didn`t exist in oil emulsion. The pine needle extracts played role as a strong chelating agents to bind iron ion if Ferrous iron(Fe\ulcorner) exist in oil emulsion. Ferric iron(Fe) was lower effect than Ferrous iron(Fe) on free radical reaction in oil emulsion. And also, the Fe\ulcorner reacted with pine needle extract did not show distinct effect on free radical reaction, compared to Fe\ulcorner reacted with pine needle extract. And also, Pine needle extracts reacted with H\ulcornerO\ulcorner were tended to show a low oxygen scavenging ability in case of H\ulcornerO\ulcorner only was existed, compared to those of H\ulcornerO\ulcorner + Fe\ulcorner complex. Pine needle extracts were the most powerful Fe\ulcorner binding agents, compared to other strong synthetic antioxidants such as EDTA and DTPA.

  • PDF

Oxidation of organic contaminants in water by iron-induced oxygen activation: A short review

  • Lee, Changha
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.205-211
    • /
    • 2015
  • Reduced forms of iron, such as zero-valent ion (ZVI) and ferrous ion (Fe[II]), can activate dissolved oxygen in water into reactive oxidants capable of oxidative water treatment. The corrosion of ZVI (or the oxidation of (Fe[II]) forms a hydrogen peroxide ($H_2O_2$) intermediate and the subsequent Fenton reaction generates reactive oxidants such as hydroxyl radical ($^{\bullet}OH$) and ferryl ion (Fe[IV]). However, the production of reactive oxidants is limited by multiple factors that restrict the electron transfer from iron to oxygen or that lead the reaction of $H_2O_2$ to undesired pathways. Several efforts have been made to enhance the production of reactive oxidants by iron-induced oxygen activation, such as the use of iron-chelating agents, electron-shuttles, and surface modification on ZVI. This article reviews the chemistry of oxygen activation by ZVI and Fe(II) and its application in oxidative degradation of organic contaminants. Also discussed are the issues which require further investigation to better understand the chemistry and develop practical environmental technologies.

황산제일철 용액의 오존 처리에 의한 산화철 합성 (Synthesis of Iron Oxide Using Ferrous Sulfate by Ozone Treatment)

  • 김삼중;서동수;엄태형;송경섭;노재승
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.353-357
    • /
    • 2004
  • The influences of the ozone oxidation, reaction temperature and NaOH equivalent ratio on the iron oxide formation were studied with fixed ferrous sulfate concentration(0.5M $FeSO_4$$7H_2$O). Geothite($\alpha$-FeOOH) and/or Magnetite ($Fe_3$$O_4$) were synthesized depending on the reaction conditions. The characteristics of the synthesized powders were evaluated by XRD, SEM and quantitative phase analysis. The synthetic conditions to get Goethite were quite different from the results of Kiyama's and the Goethite was conveniently synthesized at low temperature and at low NaOH equivalent ratio.

저품위 동광석의 세균침출에 관한 연구 2

  • 이강순;민봉희;장정순
    • 미생물학회지
    • /
    • 제10권1호
    • /
    • pp.1-8
    • /
    • 1972
  • This experiment was carried out to investigate the physiological characteristics of isolated bacteria, Ferrobacillus ferooxidans from copper mine water in Korea. The results obtained were as follows ; 1. The optimum pH range for the growth of these bacteria was 2.0-3.0 and optimum temperature was $20^{\circ}C$-$30^{\circ}C$. 2. The oxidation curves of ferrous iron to the ferric iron ran parallel with the growth curves. 3. The optimum nitrogen concentration was 400-800 ppm and the minimal flow rate of air for the maximal growth of the bactria was 70 ml air/min./200ml medium. 4. The growth of these bacteria was inhibited by the absence of ferrous iron and by the addition of sulfur. 5. Ferrous iron at a concentration of 9000 ppm, appeared to be optimum for the most rapid growth of Ferrobacillus ferrooxidans.

  • PDF