• Title/Summary/Keyword: Ferroelectric copolymers

Search Result 6, Processing Time 0.02 seconds

Recent Development in Polymer Ferroelectric Field Effect Transistor Memory

  • Park, Youn-Jung;Jeong, Hee-June;Chang, Ji-Youn;Kang, Seok-Ju;Park, Cheol-Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.51-65
    • /
    • 2008
  • The article presents the recent research development in polymer ferroelectric non-volatile memory. A brief overview is given of the history of ferroelectric memory and device architectures based on inorganic ferroelectric materials. Particular emphasis is made on device elements such as metal/ferroelectric/metal type capacitor, metal-ferroelectric-insulator-semiconductor (MFIS) and ferroelectric field effect transistor (FeFET) with ferroelectric poly(vinylidene fluoride) (PVDF) and its copolymers with trifluoroethylene (TrFE). In addition, various material and process issues for realization of polymer ferroelectric non-volatile memory are discussed, including the control of crystal polymorphs, film thickness, crystallization and crystal orientation and the unconventional patterning techniques.

Relaxation phenomena of electro-optic coefficient in P(VDF-TrFE) copolymers (강유전성 고분자인 P(VDF-TrFE)공중합체의 전기광학계수의 완화현상)

  • 임종선;박광서
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.225-229
    • /
    • 2001
  • Relaxation phenomena of the electro-optic coefficient in ferroelectric copolymer P (VDF- TrFE) were studied. The electro-optic coefficient of copolymers was measured by simple reflection method and the decay curves were fitted by KWW stretched exponentials. The copolymers poled near Tc. Were shown to be more stable than the copolymer poled at lower temperatures. Further, the relaxation time t depending on temperature was found to follow Arrhenius behavior and it was found that the activation energy of 50/50 mol% P (VDF-TrFE) copolymer is larger than that of 72/28 mol% copolymer. As a result, the ferroelectric copolymer with VDF of 50 mol% is was more stable.stable.

  • PDF

Ferroelectric P(VDF/TrFE) Copolymers in Low-Cost Non-Volatile Data Storage Applications

  • Prabu A. Anand;Lee, Jong-Soon;Chang You-Min;Kim, Kap-Jin
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.237-237
    • /
    • 2006
  • P(VDF/TrFE(72/28) ultrathin films were used in the fabrication of Metal-Ferroelectric polymer-Metal (MFM) single bit device with special emphasis on uniform film surface, faster dipole switching time under applied external field and longer memory retention time. AFM and FTIR-GIRAS were complementary in analyzing surface crystalline morphology and the resultant change in chain orientation with varying thermal history. DC-EFM technique was used to 'write-read-erase' the data on the memory bit in a much faster time than P-E studies. The results obtained from this study will enable us to have a good understanding of the ferroelectric and piezoelectric behavior of P(VDF/TrFE)(72/28) thin films suitable for high density data storage applications.

  • PDF

Dielectric Properties of P(VDF/TrFE) Thin Films Prepared by Vapor Deposition Method (진공증착법으로 제조된 P(VDF/TrFE) 박막의 유전특성)

  • Jeong, Mu-Yeong;Yun, Jong-Hyeon;Lee, Seon-U;Park, Su-Hong;Yu, Do-Hyeon;Lee, Deok-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • P(VDF/TrFE) copolymer thin films with 70/30 and 80/20 mol% VDF (polyvinylidene fluoride) and TrFE (trifluoroethylene) rates were prepared by using a vapor deposition method, During thin films were prepared, the substrate temperatures were maintained at 30 $^{\circ}C$ and 120 $^{\circ}C$, and the heating source temperature was fixed at 350 $^{\circ}C$. Contary to PVDF homopolymer, P(VDF/TrFE) copolymers showed the Curie point(Tc) below the melting point. The Curie point (Tc) and the melting point of the P(VDF/TrFE) copolymers were changed as a function of substrate temperature and the VDF mol%. The Curie point and the melting point of P(VDF/TreFE) thin films decreased and increased with increasing substrate temperature, respectively. Also with increasing VDF mol%, the melting point decreased slightly, however the Curie point increased.

  • PDF

Dielectric properties of P(VDF/TrFE) copolymers thin films prepared by Casting method (Casting 법으로 제조된 P(VDF/TrFE) 공중합체 박막의 유전 특성)

  • Yoon, J.H.;Chung, M.Y.;Lee, S.W.;Park, S.H.;Kim, J.T.;Kim, B.S.;Lee, D.C.;Lim, E.C.;Choi, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1631-1633
    • /
    • 2000
  • A study was carried out on the effect of VDF mol%, on the phase transition presented by P(VDF/TrFE) copolymer cast from dimethylformamide(DMF) solution with molar ratios 70/30 and 80/20. The results from dielectric spectrum and differential scanning calorimetry(DSC) showed that the phase transitions from ferroelectric to paraelectric phase(Curie transition) were observed The Curie point slightly has shifted to high temperature with increasing in VDF mol%, however, the melting point has shifted to low temperature.

  • PDF

Influense of the high-voltage conductivity on peculiarity of polarization ferroelectric polymer on based vinylidenefluoride

  • Kochervinskii, V.V.;Chubunova, E.V.;Lebedinskii, Y.Y.;Pavlov, A.S.;Pakuro, N.I.
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.113-132
    • /
    • 2015
  • The phenomena of high-voltage polarization and conductivity in oriented vinylidenefluoride and tetrafluoroethylene copolymer films have been investigated. It was shown that under certain electric fields, injection of carriers from the material of electrodes appears The barrier for holes injection in the copolymer was found to be lower than that for electrons. It results in more effective screening of the external field near the anode than near cathode. Electrones, ejected from cathode, creating negative charge by trapping on the surface. It is shown that the electrons injected from cathodes create a negative homocharge on the copolymer surface and then become captured on the surface shallow traps. Their nature has been studied by the x-ray photoelectron spectroscopy. It was shown that these traps may consist of chemical defects in the form of new functional groups formed by reactions of surface macromolecules with sputtered atoms of aluminum. The asymmetric shape of hysteresis curves was explained by the difference in mobility of injected holes and electrons. These factors caused appearance of "non-closed" hysteresis curves for fluorine-containing polymer ferroelectrics. Hysteresis phenomena observed at low electric fields (below coercive ones) are to associate with the behavior of the domains localized in the ordered regions formed during secondary crystallization of copolymers.