• 제목/요약/키워드: Ferritin

검색결과 358건 처리시간 0.032초

임신부와 신생아의 철분 영양상태에 관한 연구 (Iron Status in Pregnant Women and Their Newborn Infants)

  • 김은경
    • Journal of Nutrition and Health
    • /
    • 제32권7호
    • /
    • pp.793-801
    • /
    • 1999
  • The purposes of this study are to assess iron status in mothers and their newborn infants at birth and to analyze the influence of maternal iron status on their newborn babies. Venous bloods samples were drawn from 144 pregnant women just before delivery and cord bloods of their newborn babies were collected immediately after birth for measurement of hemoglobin, hematocrit, serum iron, ferritin, total binding capacity and transferrin saturation. The values of hemoglobin and hematocrit were significantly lower in the mothers(10.9$\pm$1.43g/dl and 33.7$\pm$3.67%) than in their newborn infants(14.7$\pm$1.43g/dl and 45.3$\pm$4.76%)(p<0.0001). At delivery, serum iron levels in cord blood were about twice as high as those in the maternal blood, and serum ferritin levels in the cord blood were about four times higher than those in the maternal blood. The serum ferritin levels of multigravidas were higher than those of primigravidas,. but there was no difference between the serum ferritin levels of their infants. The serum ferritin levels of the mothers and their infants were higher in maternal group with iron supplement regularly than in other maternal group without iron supplement during pregnancy. Among the mothers, 26.4% had a serum ferritin levels below 12ng/ml(i.e. depleted iron stores)and 78.9% had a hemoglobin below 12g/dl(i.e.iron deficient anemia). When the maternal group was classified according to their serum ferritin levels by 9ng/ml, 12ng/dl or 20ng/ml, there was no significant difference in the iron status of their newborn infants among the three groups. The hemoglobin and serum ferritin levels of the mothers were well correlated with those of their babies. The maternal hemoglobin values negatively correlated with infant birth weight. It is possible that the demands of iron of the mother might be increased in the case of a newborn infant of greater size. The results of this study provide useful information regarding establishment of RDA for iron in pregnant women and guidance about the need for iron supplement during pregnancy.

  • PDF

Expression and Purification of Intact and Functional Soybean (Glycine max) Seed Ferritin Complex in Escherichia coli

  • Dong, Xiangbai;Tang, Bo;Li, Jie;Xu, Qian;Fang, Shentong;Hua, Zichun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.299-307
    • /
    • 2008
  • Soybean seed ferritin is essential for human iron supplementation and iron deficiency anemia prevention because it contains abundant bioavailable iron and is frequently consumed in the human diet. However, it is poorly understood in regards its several properties, such as iron mineralization, subunit assembly, and protein folding. To address these issues, we decided to prepare the soybean seed ferritin complex via a recombinant DNA approach. In this paper, we report a rapid and simple Escherichia coli expression system to produce the soybean seed ferritin complex. In this system, two subunits of soybean seed ferritin, H-2 and H-1, were encoded in a single plasmid, and optimal expression was achieved by additionally coexpressing a team of molecular chaperones, trigger factor and GroEL-GroES. The His-tagged ferritin complex was purified by $Ni^{2+}$ affinity chromatography, and an intact ferritin complex was obtained following His-tagged enterokinase (His-EK) digestion. The purified ferritin complex synthesized in E. coli demonstrated some reported features of its native counterpart from soybean seed, including an apparent molecular weight, multimeric assembly, and iron uptake activity. We believe that the strategy described in this paper may be of general utility in producing other recombinant plant ferritins built up from two types of subunits.

Iron-fortified recombinant Saccharomyces cerevisiae producing Sus scrofa ferritin heavy-chain recovers iron deficiency in mice

  • Lim, Hwan;Kim, Jong-Taek;Kim, Myoung-Dong;Rhee, Ki-Jong;Jung, Bae Dong
    • 대한수의학회지
    • /
    • 제52권4호
    • /
    • pp.263-268
    • /
    • 2012
  • In this study, we produced iron-fortified yeast (Saccharomyces cerevisiae) producing Sus scrofa ferritin heavy-chain to provide iron supplementation in anemic piglets. We determined whether iron-ferritin accumulated in recombinant yeasts could improve iron deficiency in mice. C57BL/6 male mice exposed to Fe-deficient diet for 2 weeks were given a single dose of ferrous ammonium sulfate (FAS), ferritin-producing recombinant yeast (APO), or APO reacted with iron ($Fe^{2+}$) (FER). The bioavailability of recombinant yeasts was examined by measuring body weight gain, hemoglobin concentration and hematocrit value 1 week later. In addition, ferritin protein levels were evaluated by western blot analysis and iron stores in tissues were measured by inductively coupled plasma spectrometer. We found that anemic mice treated with FER exhibited increased levels of ferritin heavy-chain in spleen and liver. Consistently, this treatment restored the iron concentration in these tissues. In addition, this treatment significantly increased hemoglobin value and the hematocrit ratio. Furthermore, FER treatment significantly enhanced body weight gain. These results suggest that the iron-fortified recombinant yeast strain is bioavailable.

The Relationship between Serum Ferritin and Bone Mineral Density

  • ;;김정하
    • 대한의생명과학회지
    • /
    • 제16권4호
    • /
    • pp.293-298
    • /
    • 2010
  • Several risk factors for osteoporosis are known relatively well. Some nutrients are directly or indirectly needed for metabolic processes related to bone. Recently, an increased prevalence of osteoporosis has been reported in patients with hemochromatosis, an iron overload disease. Thus, the aim of this study was to find out if there was any relationship between serum ferritin and T-score of bone mineral density in healthy women. We recruited 1,101 subjects females aged between 39 and 85 years. We measured serum ferritin, glucose tolerance indices, lipid profiles, inflammatory indices, hormones, calcium, alkaline phosphatase. Also, anthropometric, blood pressure, and bone mineral density measurements were performed. T-score was negatively correlated with age (r=-0.425; P<0.01), systolic (r=-0.109; P<0.01) and diastolic (r=-0.093; P<0.01) pressure, follicular stimulation hormone (r=-0.190; P<0.01), alkaline phosphatase (r=-0.235; P<0.01), and serum ferritin (r=-0.090; P<0.05) and positively with body mass index (r=0.050; P=0.01), HDL-cholesterol (r=0.314; P<0.01), and estradiol (r=0.200; P<0.01). After adjustment for age, alkaline phosphatase, body mass index, HDL-cholesterol, estradiol, and follicular stimulation hormone, serum ferritin was independently inversely correlated with T-score (${\beta}$=-0.001; P<0.05). It is possible that an increase of serum ferritin in females be risk to osteoporosis.

Elevated Serum Ferritin Levels in Patients with Hematologic Malignancies

  • Zhang, Xue-Zhong;Su, Ai-Ling;Hu, Ming-Qiu;Zhang, Xiu-Qun;Xu, Yan-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6099-6101
    • /
    • 2014
  • Purpose: To retrospectively analyze variability and clinical significance of serum ferritin levels in Chinese patients with hematologic malignancies. Materials and Methods: Serum ferritin were measured by radioimmunoassay, using a kit produced by the Beijing Institute of Atomic Energy. Patients with hematologic malignancies, and treated in the Department of Hematology in Nanjing First Hospital and fulfilled study criteria were recruited. Results: Of 473 patients with hematologic malignancies, 262 patients were diagnosed with acute leukemia, 131 with lymphoma and 80 with multiple myeloma. Serum ferritin levels of newly diagnosed and recurrent patients were significantly higher than those entering complete remission stage or in the control group (p<0.001). Conclusions: Serum ferritin lever in patients with hematologic malignancies at early stage and recurrent stage are significantly increased, so that detection and surveillance of changes of serum ferritin could be helpful in assessing conditions and prognosis of this patient cohort.

Expression of a Carboxy-Terminal Deletion Mutant of Recombinant Tadpole H-Chain Ferritin in Escherichia coli

  • Lee, Mi-Young;Kim, Young-Taek;Kim, Kyung-Suk
    • BMB Reports
    • /
    • 제29권5호
    • /
    • pp.411-416
    • /
    • 1996
  • In order to study the role of the protein shell in both iron uptake and iron core formation of ferritin, we constructed a deletion mutant of the ferritin gene and expressed the mutant gene in Escherichia coli, This mutant was obtained by introducing an amber mutation at position Pro-157 and a deletion of the 19 amino acid residues at the carboxy-terminus of the recombinant tadpole H-chain ferritin. The deleted amino acids correspond to E-helix forming the hydrophobic channel in the protein. E. coli harboring the plasmid pTHP157, which contains the deleted gene, was grown at $23^{\circ}C$ in the presence of 0.1 mM IPTG, and the induced protein appeared to be partly soluble. Nondenaturing polyacrylamide gel electrophoresis showed that the expressed mutant H-chains coassemble into holoprotein, suggesting that E-helix is not necessary for assembly of the subunits as reported for human H-chain ferritin. Its ability in iron core formation was proven in an Fe staining gel, the result disagreeing with the observation that the hydrophobic channel is necessary for iron core formation in human H-chain ferritin.

  • PDF

돌돔 ferritin H 유전자의 클로닝과 발현 분석 (Molecular cloning and expression analysis of a ferritin H subunit from rock bream, Oplegnathus fasciatus)

  • 권문경;정지민;김주원;박찬일
    • 한국어병학회지
    • /
    • 제26권3호
    • /
    • pp.295-301
    • /
    • 2013
  • Ferritin is an evolutionarily conserved protein that plays an important role in iron storage and detoxification. In this study, the gene encoding a ferritin H subunit homologue (RbFH) was cloned from rock bream (Oplegnathus fasciatus) and analyzed at the expression. The full-length ferritin H cDNA was 1162 bp long and contained an open reading frame (ORF) of 531 bp that encoded 177 amino acid residues with a predicted molecular mass of 20.8 kDa. The 5' UTR was 297 bp in length, and the 3' UTR 298 bp, and preceded by a 5'-untranslated region that contains a putative Iron Regulatory Element (IRE). The deduced amino acid sequence of RbFH shares extensive sequence identities with the H ferritins of a number of fish species and contains the ferroxidase center that is preserved in ferritin H subunits. Examination of tissue specific expression indicated that RbFH expression was most abundant in PBLs, RBC, liver and muscle.

Characterization, Cloning and Expression of the Ferritin Gene from the Korean Polychaete, Periserrula leucophryna

  • Jeong Byeong Ryong;Chung Su-Mi;Baek Nam Joo;Koo Kwang Bon;Baik Hyung Suk;Joo Han-Seung;Chang Chung-Soon;Choi Jang Won
    • Journal of Microbiology
    • /
    • 제44권1호
    • /
    • pp.54-63
    • /
    • 2006
  • Ferritin is a major eukaryotic protein and in humans is the protein of iron storage. A partial gene fragment of ferritin (255 bp) taken from the total RNA of Periserrula leucophryna, was amplified by RT-PCR using oligonucleotide primers designed from the conserved metal binding domain of eukaryotic ferritin and confirmed by DNA sequencing. Using the $^{32}P-labeled$ partial ferritin cDNA fragment, 28 different clones were obtained by the screening of the P. leucophryna cDNA library prepared in the Uni-ZAP XR vector, sequenced and characterized. The longest clone was named the PLF (Periserrula leucophryna ferritin) gene and the nucleotide and amino acid sequences of this novel gene were deposited in the GenBank databases with accession numbers DQ207752 and ABA55730, respectively. The entire cDNA of PLF clone was 1109 bp (CDS: 129-653), including a coding nucleotide sequence of 525 bp, a 5' -untranslated region of 128 bp, and a 3'-noncoding region of 456 bp. The 5'-UTR contains a putative iron responsive element (IRE) sequence. Ferritin has an open reading frame encoding a polypeptide of 174 amino acids including a hydrophobic signal peptide of 17 amino acids. The predicted molecular weights of the immature and mature ferritin were calculated to be 20.3 kDa and 18.2 kDa, respectively. The region encoding the mature ferritin was subcloned into the pT7-7 expression vector after PCR amplification using the designed primers and included the initiation and termination codons; the recombinant clones were expressed in E. coli BL21(DE3) or E. coli BL21(DE3)pLysE. SDS-PAGE and western blot analysis showed that a ferritin of approximately 18 kDa (mature form) was produced and that by iron staining in native PAGE, it is likely that the recombinant ferritin is correctly folded and assembled into a homopolymer composed of a single subunit.

큰느타리버섯에서 석충 페리틴 단백질 유전자의 발현 최적화 및 생물학적 활성 (Optimization of the Expression of the Ferritin Protein Gene in Pleurotus eryngii and Its Biological Activity)

  • 우연정;오시윤;최장원
    • 한국균학회지
    • /
    • 제47권4호
    • /
    • pp.359-371
    • /
    • 2019
  • 큰느타리버섯에서 철 저장과 관련된 페리틴 단백질의 발현 및 분비를 최적화하기 위해, T-Fer 벡터에 EcoRI 및 HindIII처리를 해 페리틴 유전자를 얻은 후, BamHI으로 처리된 선형의 pPEVPR1b 분비 벡터에 클로닝하여pPEVPR1b-Fer 재조합 벡터를 구축한 다음 Agrobacterium tumefaciens LBA4404 로 도입하였다. Agrobacterium tumefaciens-mediated transformation 방법에 의해 Pleurotus eryngii로 형질전환하고 kanamycin함유된 MCM 배지에서 올바른 형질전환체를 선별하였고, 단백질 발현은 SDS-PAGE 및 항원항체 반응에 의한 western blot으로 확인하였다. 페리틴 단백질의 분비 발현은 batch culture 및 20 L airlift type fermenter에서 배양 시간 및 온도와 같은 배양 조건에 의해 최적화되었다. 페리틴 생산을 위한 배양 조건은 MCM 배지에서 25℃ 및 8 일 배양에 의해 최적화되었다. 페리틴 단백질의 양은 정량적 단백질 분석에 의해 2.4 mg/g mycelium으로 측정되었다. 그러나, PR1b (32 amino acid)의 분비서열은 큰느타리버섯 내부의 peptidase에 의해 정확하게 processing되지 않았지만, 페리틴 단백질은 균사체에서 최대로 전체단백질의 24.7% 발현되었고, 배양액에서는 검출되지 않았다. 철 결합 활성은 7.5% non-denaturing gel에서 Perls' staining에 의해 확인되었으며, 다량체 페리틴(24 subunits)이 P. eryngii 균사체에서 형성되었음을 보여준다. 생물학적 활성 측정을 위하여 페리틴을 함유한 분말을 제조하여 육계의 사료 첨가제로서의 사용 가능성에 대해 시험하였으며, 결과적으로 페리틴은 육계의 성장을 촉진하고 사료 효율 및 생산 지수를 향상시키는것으로 확인되었다.

대두 철분결합단백질 유전자 발현 형질전환 감자의 감자무름병 방어 증진효과 (Tolerance to Potato Soft Rot Disease in Transgenic Potato Expressing Soybean Ferritin Gene)

  • 배신철;여윤수;허성기;황덕주;변명옥;고승주
    • Journal of Plant Biotechnology
    • /
    • 제29권4호
    • /
    • pp.229-233
    • /
    • 2002
  • 식물의 항산화력을 증진하여 식물병원균 저항성 작물을 개발하고자, 철분 결합 단백질인 대두의 ferritin 유전자를 CaMV 35S와 hsr203J promoter에 연결하여 감자에 형질전환하였다. PCR및 Northern분석에 의한 형질전환 감자에 ferritin 유전자가 존재하는 것과 이들 유전자 식물체내에서 발현되는 것을 확인하였다. ferritin 유전자를 담배 유래 병원균 특이 발현promoter인 hsr203J와 연결하여 획득된 형질전환 감자 식물체는 감자역병균 접종 후 24시간대에서 전사체 발현량이 가장 많았으며 그 후 줄어드는 경향을 나타내었다. 유전자 도입이 확인된 형질전환체 감자괴경의 철분 함량은 CaMV 35S와 ferritin 유전자 도입 형질전환체가 2.5배, hsr203J promoter와 ferritin 유전자 도입 형질전환체가 1.5배 각각 증가하는 것으로 나타냈다. 또한 이들 형질전환체는 감자 무름병균에 대한 저항성 증진효과를 관찰할 수 있었다.