• Title/Summary/Keyword: Ferrite-Bainite

Search Result 107, Processing Time 0.022 seconds

Effect of Carbon Equivalent and Cooling Rate on Microstructure in A516 Steels for Pressure Vessel (압력용기용 A516 강의 미세조직에 미치는 탄소 당량과 냉각 속도의 영향)

  • Lee, Hyun Wook;Kang, Ui Gu;Kim, Min Soo;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.511-518
    • /
    • 2019
  • In this study, the effect of carbon equivalent and cooling rate on microstructure and hardness of A516 steels for pressure vessel is investigated. Six kinds of specimens are fabricated by varying carbon equivalent and cooling rate, and their microstructures and hardness levels are analyzed. Specimens with low carbon equivalent consist of ferrite and pearlite. As the cooling rate increases, the size of pearlite decreases slightly. The specimens with high carbon equivalent and rapid cooling rates of 10 and $20^{\circ}C/s$ consist of not only ferrite and pearlite but also bainite structure, such as granular bainite, acicular ferrite, and bainite ferrite. As the cooling rate increases, the volume fractions of bainite structure increase and the effective grain size decreases. The effective grain sizes of granular bainite, acicular ferrite, and bainitic ferrite are ~20, ~5, and ${\sim}10{{\mu}m$, respectively. In the specimens with bainite structure, the volume fractions of acicular ferrite and bainitic ferrite, with small effective grains, increase as cooling rate increases, and so the hardness increases significantly.

Morphological Variation of Bainitic Ferrite in Transformation Process of Austempered Ductile Iron (구상흑연주철의 Bainite변태과정에서 Bainitic Ferrite의 형상변화)

  • Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.12 no.5
    • /
    • pp.403-411
    • /
    • 1992
  • The growth characteristics of bainite at early stage in the fast quenched spheroidal graphite cast irons containing 0.06%Mn and 0.45%Mn during austempering process, was investigated with optical and scanning electron microscope. The following results regarding the effects of Mn and isothermal heat treatment on the morphological variation of bainitic ferrite were obtained. The morphology of bainite varies from acicular below 350$^{\circ}C$ to feather shape above 350$^{\circ}C$. The period of isothermal treatment also affects the shape of bainite at the fixed temperature. At 350$^{\circ}C$, bainite is bamboo leaf-like up to 200 secs of isothermal holding time and with further increasing time up to 300 secs, changes to a mixed structure consisting of both feather and bamboo leaf and, finally becomes all feather shape at 900 secs. The morphology of bainitic ferrite formed at early stage of 300$^{\circ}C$ isothermal treatment is similar to that of bainitic ferrite formed at 250$^{\circ}C$ or 350$^{\circ}C$ with unbranched, linear ferrite. However, bainitic ferrite divides into branches with increasing isothermal treatment, which occurs more fast at 400$^{\circ}C$ than at 350$^{\circ}C$. The difference in adding amount of Mn influences the morphology of bainitic ferrite in upper bainite. The bainitic ferrite with 0.45%Mn is observed to be more stable than that with 0.06%Mn, remaining unbranched for a longer period at the same temperature.

  • PDF

Characteristics of Heat Generation during Transormation in Carbon Steels (일반탄소강의 상변태 중 발열 특성 해석)

  • 한흥남
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.196-201
    • /
    • 2000
  • A thermodynamic model was developed to analyze the characteristics of the heat generation during transformation of austenite in 0.186wt% and 0.458 wt%. carbon steels. The heat capacity and the heat evolved during transformation were formulated as functions of temperature and chemical composition for ferrite bainite and pearlite. in addition using the transformation dilatometer the transformation heat evolved during cooling was measured and the transformation behavior was observed. It was found that the heat capacity of ferrite was similar to those of pearlite and bainite. The heat capacity of ferrite was greater than that of bainite which was greater than that of pearlite. The molar heat of transformation to pearlite was greater than that to bainite which was greater than that to ferrite. The heats were found to be increased with decreased temperature and increasing the carbon content, It was also observed that the thermodynamic model. The heat of transformation in the higher carbon steel was greater than that in the lower carbon one. This was attributed to the lower transformation temperature and the greater amount of transformed pearlite in the higher carbon steel.

  • PDF

Effect of Special the Heat Treatment on the Strength and Toughness in a Multi-phase(Ferrite-Bainite-Martensite) Ductile Cast Iron (3상(相) 혼합조직(混合組織) 구상흑연주철(球牀黑鉛鑄鐵)의 강인화(强引化)에 미치는 특수열처리(特殊熱處理)의 영향(影響)에 관(關)한 연구(硏究))

  • Choi, Hyun-Soo;Kim, Sug-Won
    • Journal of Korea Foundry Society
    • /
    • v.9 no.6
    • /
    • pp.463-473
    • /
    • 1989
  • This study is aimed to investigate the effect of cyclic heat treatment which is special heat treatment on the strength and toughness in Multi-phase(Ferrite-Bainite-Martensite) Ductile cast Irons. Spceimens were austenitized at eutectoid transformation temperature range(${\alpha}+{\gamma}$) for 30min and austempered at $300^{\circ}C$ and $400^{\circ}C$ for different holding times, and then quenched in ice water to obtain the multi-phase(Ferrite-Bainite-Martensite) structure from various prior structures, which was obtained by various cyclic heat treatments. As the number of cycle in cyclic heat treatment increased, volume fraction of pearlite increased and the its morphology was refined. As the number of cycle in cyclic heat treatment increased, the multi-phase(Ferrite-Bainite-Martensite) was dispersed in whole matrix as refined island phase. Particularly, martensite among the multi-phase gradually became a spherical shape. Good combination in impact energy and tensile strength was detained in $840^{\circ}C-300^{\circ}C-15min$ condition after 10 cycles in cyclic heat treatment, and its multi-phase volume fraction is Ferrite(50%)-Martensite(l3%)-Bainite(37%).

  • PDF

The Characteristics of Microstructure and the Mechanical Properties of Multi-Phase Sheet Steel. (다상조직강의 기계적 성질과 조직특성)

  • Park, Jong-Hyeon;Gang, Gye-Myeong;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.115-124
    • /
    • 1991
  • In this study, the relationship between mechanical properties and the effects of second phase in tri-phase steel which was composed of ferrite-martensite-bainite was investigated. In order to obtain different microstructure of ferrite+martensite(DP), ferrite+bainite(F+B), and ferrite+martensite+bainite(TP, different heat treatment has been accomplished. The effects of volume fraction and microstructure of each specimen were studied on tensile property, Charpy impact energy and stretch-flangeability. As the bainite content in triphase steels increased, the tensile strength, and yield strength decreased as well as the reduction of area and strength-uniform elongation increased. However, ferrite-bainite steel had high yield ratio and yield point elongation. The Charpy impact energy of TP and F+B steel was higher than that of DP steel. In addition, the characteristics of hole expanding limit($\lambda$) of TP steel and F+B steel were higher than that of DP steel. These mechanical properties of tri-phase steel have been improved, because bainite could be deformed easily within ferrite matrix. The effect of bainite on ductility in tri-phase steel has been found to be favorable. In this experiment, tri-phase steel contained within 27% bainite volume fraction had good nechanical properties and superior stretch-flangeability.

  • PDF

Microstructures and Mechanical Properties of API J55 steel with Heat treatment conditions and Alloying elements(B, Ti) (API J55강의 미세조직과 기계적 특성에 미치는 열처리 및 합금원소(B, Ti)의 영향)

  • Choi, Jong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.69-76
    • /
    • 2018
  • This study examined the effect of the heat treatment and alloying elements (B, Ti) on the microstructures and mechanical properties of API J55 steel. The experiments were carried out using various austenization temperatures ($880^{\circ}C$, $910^{\circ}C$, $940^{\circ}C$), cooling methods (water quenching, oil quenching) and tempering temperatures (none, $550^{\circ}C$, $650^{\circ}C$) with J55 and J55+B,Ti steels. The phase diagram and CCT curve were simulated based on the chemical compositions of the J55 and J55+B,Ti steels to predict the microstructures. The results showed that the A1 and A3 temperatures decreased and, as a result, the noses of the ferrite and bainite parts of the CCT curve moved to the right. Various microstructures were formed, namely martensite, bainite, ferrite and pearlite, in accordance with the heat treatment, which had an effect on the hardness, tensile strength and toughness. Martensite was formed after water quenching, but bainite and ferrite appeared after oil quenching with the J55 specimens. On the other hand, martensite was formed, regardless of the cooling method (water quenching, oil quenching), with the J55+B,Ti specimens, because of the improvement of the hardenability caused by the addition of boron. Therefore, the J55+B,Ti specimens exhibited much higher mechanical properties than the J55 specimens, even after the tempering treatment, since the addition of Ti caused fine precipitates to be formed, which inhibited grain growth at the recrystallization temperature.

A Study of Fatigue Crack Growth Behaviour for Ferrite-Bainite Dual Phase Steel (Ferrite-Bainite dual phase 강의 피로균열진전 특성 평가)

  • Kim, Deok-Geun;Cho, Dong-Pil;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • With the recent increase in size of ships and offshore structures, there are more demand for thicker plates. As the thickness increases, it is known that fatigue life of the structures decrease. To improve the fatigue life, post weld treatments techniques, such as toe grinding, TIG dressing and hammer peening, are typically employed. However, these techniques require additional construction time and production cost. Therefore, it is of crucial interest steels with longer fatigue crack growth life compared to conventional steels. This study investigates fatigue crack growth rate (FCGR) behaviours of conventional EH36 steel and Ferrite-Bainite dual phase EH36 steel (F-B steel). F-B steel is known to have improved fatigue performance associated with the existence of two different phases. Ferrite-Bainite dual phase microstructures are obtained by special thermo mechanical control process (TMCP). FCGR behaviours are investigated by a series of constant stress-controlled FCGR tests. Considering all test conditions (ambient, low temperature, high stress ratio), it is shown that FCGR of F-B steel is slower than that of conventional EH36 steel. From the tensile tests and impact tests, F-B steel exhibits higher values of strength and impact energy leading to slower FCGR.

Changes of Microstructure due to Mn Element and Pearlite-Bainite Transformation Treatment in Ductile Cast Iron (구상흑연주철의 Mn성분과 펄라이트-베이나이트변태 처리의 변화가 미세조직에 미치는 영향)

  • Suh, Kwan-Soo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.12 no.3
    • /
    • pp.230-237
    • /
    • 1992
  • The purpose of present investigation is to obtain ductile cast iron with ferrite-bainite matrix by pearlite-bainite transformation treatment. Ductile cast irons having three kinds of Mn ampunt had been manufactured. Mn increased pearlite volume fraction iin as-cast ductile cast iron. Ductile cast irons of different pearlite fraction were austenitized at $875\;^{\circ}C$ for 230-350 sec or $925\;^{\circ}C$ for 130-170 sec followed by austempering at $300\;^{\circ}C$ or $400\;^{\circ}C$ for the various periods of time from 5 to 30 min. When specimen was austenitixed for 130 sec at $925\;^{\circ}C$ and for 230 sec at $875\;^{\circ}C$, pearlite was transformed into austenite. Bainite around graphite was found at $925^{\circ}C$ for 170 sec. Bainite in grain boundary of ferrite was happened at $875^{\circ}C$ for 350 sec. During the austempering process, acicular bainite was precipitated at $300^{\circ}C$ and lath bainite was precipitated at $400^{\circ}C$. Increment in manganese content restrained bainitic transformation. Retained austenie was of little quantity.

  • PDF

Hole Flangeability and Fracture Behaviors of Circular Flanges of High Strength Hot Rolled Steels (고강도 열연재의 Hole Flanging시 성형특성과 파단에 관한 연구)

  • Kim J. W.;Gong S. R.;Kim B. J.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.49-52
    • /
    • 2000
  • The hole flanging experiments are performed on a flat circular plates with a hole in the center and the flangeability and fracture behavior of TRIP steel and ferrite-bainite duplex steel were examined. Over the ranges of conditions investigated, the flangeability of ferrite-bainite duplex steel is better than TRIP steel and the term 'hole flanging capacity' introduced in this study. Fracture behavior of TRIP steel and ferrite-bainite duplex steel was characterized by petal formation at the edge of flange. In case of crack propagation, crack tip diversion that is supposed to be responsible for flangeability occurs more severely on HSLA Steel.

  • PDF

A Study on the Transformation Behaviors of a Multi-phase (Ferrite-Bainite-Martensite) in Ductile Cast Iron (구상흑연주철(球狀黑鉛鑄鐵)의 3상혼합조직(相混合組織)의 변태거동(變態擧動)에 관(關)한 연구(硏究))

  • Kim, Sug-Won;Kim, Dong-Keun;Yo, Seon-Kyung
    • Journal of Korea Foundry Society
    • /
    • v.11 no.5
    • /
    • pp.406-413
    • /
    • 1991
  • Ductile cast iron(DCI) with a multi-phase(ferrite-bainite-martensite) structures was produced by various special heat treatment. Intercritical heat treatment(I. C.), intermediate heat treatment(I. M.) and step quenching(S. Q.) were used to strengthen and toughen the fracture initiation sites such as graphite-marix interfaces and eutectic cell boundaries in DCI. The purpose of this study was to investigate of DCI by the special heat treatment. (I. C., I. M., and S. Q.) At a result, bainite nucleation rate at higher temperature was higher than that of at lower temperature, and shapes of bainite and martensite became bar /spheroidal type with increase of isothermal transformation time.

  • PDF