• Title/Summary/Keyword: Ferric iron

Search Result 187, Processing Time 0.213 seconds

A Preliminary Analysis of Secreted Proteins from Bifidobacterium pseudocatanulatum BP1 by Two-Dimensional Gel Electrophoresis

  • Moon, Gi-Seong
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.366-369
    • /
    • 2008
  • Proteins secreted from bifidobacteria are believed to play important roles in human intestines via interacting with different host cells. In this respect, proteins secreted from Bifidobacterium pseudocatanulatum BP1, which has been rarely studied, were analyzed by two-dimensional gel electrophoresis (2DE). Using this approach, approx-imately 21 protein spots on a 2DE gel were detected and 10 of these spots were identified by mass spectrometry. Five spots were identified as hypothetical proteins and the remaining 5 spots were identified as a putative iron-side-rophore binding lipoprotein, a short-chain dehydrogenase/reductase SDR, an exonuclease, cytochrome P450 hydroxylase, and a putative dehydrogenase. The identification of secreted putative iron-siderophore binding lipoprotein was highly interesting since it is an important protein that is involved in ferric iron uptake in pathogenic bacteria. This finding could accelerate studies on the probiotic effect of Bifidobacterium by explaining the competition between bifidobacteria and intestinal pathogens for ferric iron.

Optimization of Cu, Hg and Cd removal by Enterobacter cloacae by ferric ammonium citrate precipitation

  • Singh, Rashmi R.;Tipre, Devayani R.;Dave, Shailesh R.
    • Advances in environmental research
    • /
    • v.3 no.4
    • /
    • pp.283-292
    • /
    • 2014
  • Iron precipitating organisms play a significant role in the formation of ferric hydroxide precipitate, which acts as strong adsorbent for toxic metal. In this respect four different iron precipitating cultures were isolated from Hutti gold mine surface winze water sample on citrate agar medium. The best isolate was screened out for metal removal study on the basis of fast visual iron precipitation. The selected isolate was identified as Enterobacter sp. based on routine biochemical tests and Biolog GN microplate results and as Enterobacter cloacae subsp. dissolvens by 16S rRNA gene sequence analysis (GenBank accession number EU429448). Influence of medium composition, medium initial pH, the influence of inoculum size, effect of various media and ferric ammonium citrate concentration were studied on metal removal in shake flask experiments. Under the optimized conditions studied, E. cloacae showed $94{\pm}2$, $95{\pm}2$ and $70{\pm}2%$ of cadmium, copper and mercury removal from a simulated waste in shake flask studies. In lab scale column reactor more than 85% of copper and mercury removal was achieved.

Isolation and Identification of an Anaerobic Dissimilatory Fe(III)-Reducing Bacterium, Shewanella putrefaciens IR-1

  • Hyun, Moon-Sik;Kim, Byung-Hong;Chang, In-Seop;Park, Hyung-Soo;Kim, Hyung-Joo;Kim, Gwang-Tae;Kim, Mi-a;Park, Doo-Hyun
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.206-212
    • /
    • 1999
  • In order to isolate a Fe(III)-reducer from the natural environment, soil samples were collected from various patty fields and enriched with ferric citrate as a source of Fe(III) under anaerobic condition. Since the enrichment culture was serially performed, the Fe(III)-reduction activity was serially diluted and cultivated on an agar plate containing lactate and ferric citrate in an anaerobic glove box. A Gram negative, motile, rod-shaped and facultative anaerobic Fe(III)-reducer was isolated based on its highest Fe(III)-reduction activity, Bacterial growth was coupled with oxidation of lactate to Fe(III)-reduction, but the isolate fermented pyruvate without Fe(III), The isolate reduced an insoluble ferric iron (FeOOH) as well as a soluble ferric iron (ferric citrate). Using the BBL crystal enteric/non-fermentor identification kit and 16S rDNA sequence analysis, the isolate was identified as Shewanella putrefaciens IR-1.

  • PDF

Thermal Reaction of Iron Precipitates Prepared by Adding Sodium Carbonate Solution to Ferrous Chloride and Ferric Chloride Solutions (염화철과 탄산나트륨 용액에 의한 철 침전물의 열반응)

  • 이서우;김태옥;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.2
    • /
    • pp.105-111
    • /
    • 1981
  • The iron precipitates were prepared by adding sodium carbonate solution to ferrous chloride and ferric chloride solutions to pH=9 and pH=4.5, respectively. The thermal reaction of the iron precipitates was investigated by means of TGA, DTA and X-ray diffraction. In the former the crystallization of $\alpha$-$Fe_2O_3$ begins at about 35$0^{\circ}C$, while in the latter at about 30$0^{\circ}C$, during the calclnation in air. In the iron precipitate from ferrous chloride solution, the activation energy for the crystallite-growth or $\alpha$-TEX>$Fe_2O_3$ in air is about 7.6$\times$104J/mole between 800 and 100$0^{\circ}C$. As the result of X-ray diffration for the reduction product of hematite, it was found that maghemite, magnetite and wustite are formed and that hematite is transformed to magnetite through maghemite.

  • PDF

Microbial Reduction of Iron Oxides and Removal of TCE using the Iron Reduced by Iron Reducing Bacteria (철 환원 박테리아에 의한 산화철의 환원과 환원된 철을 이용한 TCE 제거에 관한 연구)

  • Shin, Hwa-Young;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2005
  • In situ permeable reactive barrier (PRB) technologies have been proposed to reductively remove organic contaminants from the subsurface environment. The major reactive material, zero valent iron ($Fe^0$), is oxidized to ferrous iron or ferric iron in the barriers, resulting in the decreased reactivity. Iron-reducing bacteria can reduce ferric iron to ferrous iron and iron reduced by these bacteria can be applied to dechlorinate chlorinated organic contaminants. Iron reduction by iron reducing bacteria, Shewanella algae BrY, was observed both in aqueous and solid phase and the enhancement of TCE removal by reduced iron was examined in this study. S. algae BrY preferentially reduced Fe(III) in ferric citrate medium and secondly used Fe(III) on the surface of iron oxides as an electron acceptor. Reduced iron formed reactive materials such as green rust ferrihydrite, and biochemical precipitation. These reactive materials formed by the bacteria can enhance TCE removal rate and removal capacity of the reactive barrier in the field.

Treatment of Phosphorus Species using Iron Coagulation and Fenton Oxidation (철염 응집과 펜톤 산화를 이용한 인의 존재형태별 처리)

  • Park, Sung-Hwan;Moon, Byung-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.653-657
    • /
    • 2014
  • Effects of $H_2O_2$ addition for fenton oxidation on iron coagulation for treatment of phosphorus species, such as orthophosphate, metaphosphate, pyrophosphate, organic phosphate, were investigated. The effects of coagulant dosage, hydrogen peroxide dosage and the combined sequence ferric coagulation and $H_2O_2$ addition for fenton oxidation and coagulation were studied. The characteristics of floc growth rate were monitored using the PDA. The removal efficiencies of phosphorus species by iron coagulation were increased as Fe/P molar ratio increased. However, the removal efficiencies of metaphosphate, pyrophosphate, organic phosphate by a ferric coagulation were not increased as Fe/P molar ratio increased. The removal efficiency of metaphosphate, pyrophosphate, organic phosphate was increased by using iron coagulation and $H_2O_2$ addition for fenton oxidation. The result indicated that non-reactive phosphorus after iron coagulation was changed to reactive phosphorus by $H_2O_2$ addition for fenton oxidation and the oxidized iron enhanced the coagulation efficiencies.

Screening of Differentially Expressed Genes by Desferrioxamine or Ferric Ammonium Citrate Treatment in HepG2 Cells

  • Park, Jong-Hwan;Lee, Hyun-Young;Roh, Soon-Chang;Kim, Hae-Yeong;Yang, Young-Mok
    • BMB Reports
    • /
    • v.33 no.5
    • /
    • pp.396-401
    • /
    • 2000
  • A differential display method is used to identify novel genes whose expression is affected by treatment with ferric ammonium citrate (FAC) or desferrioxamine (DFO), an iron chelating agent in the human hepatoblastoma cell line (HepG2). These chemicals are known to deplete or increase the intracellular concentration of iron, respectively. Initially, we isolated seventeen genes whose expressions are down- or up regulated by the treatment of the chemicals, as well as their four differentially expressed genes that are designated as clone-1, -2, -3, and -4. These are further characterized by cDNA sequencing and Northern blot analysis. Through the cDNA sequencing, as well as comparing them to genes published using the NCBI BLAST program, we identified the sequence of the clone-1 that is up-regulated by the treatment of DFO. It is identical to the human insulin-like growth factor binding protein-1 (IGFBP-1). This suggests that the IGFBP-1 gene in the HepG2 cell is up-regulated by an iron depletion condition. Also, the expression of the clone-3 and -4 is up-regulated by FAC treatment and their eDNA sequences are identical to the human ferritin-fight chain and human NADH-dehydrogenase, respectively. However, the sequence of the clone-2 has no significant homology to any other known gene. Therefore, we suggest that changes of the cellular iron level in the HepG2 cell affects the transcription of cellular genes. This includes human IGFBP-1, ferritin-fight chain, and NADH-dehydrogenase. Regulation of these gene expressions may have an important role in cellular functions that are related to cellular iron metabolism.

  • PDF

Effect of myoglobin, hemin, and ferric iron on quality of chicken breast meat

  • Zhang, Muhan;Yan, Weili;Wang, Daoying;Xu, Weimin
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1382-1391
    • /
    • 2021
  • Objective: The objective was to evaluate the impact of different forms of iron including myoglobin, hemin, and ferric chloride on the quality of chicken breast meat. Methods: Chicken breast muscles were subjected to 1, 2, 3 mg/mL of FeCl3, myoglobin and hemin treatment respectively, and the production of reactive oxygen species (ROS) and malondialdehyde, meat color, tenderness, water holding capacity and morphology of meat was evaluated. Results: Hemin was found to produce more ROS and induce greater extent of lipid oxidation than myoglobin and ferric chloride. However, it showed that hemin could significantly increase the redness and decrease the lightness of the muscle. Hemin was also shown to be prominent in improving water holding capacity of meat, maintaining a relatively higher level of the immobilized water from low-field nuclear magnetic resonance measurements. Morphology observation by hematoxylin-eosin staining further confirmed the results that hemin preserved the integrity of the muscle. Conclusion: The results indicated that hemin may have economic benefit for the industry based on its advantage in improving water holding capacity and quality of meat.

Evaluation of dynamic behavior of coagulation-flocculation using hydrous ferric oxide for removal of radioactive nuclides in wastewater

  • Kim, Kwang-Wook;Shon, Woo-Jung;Oh, Maeng-Kyo;Yang, Dasom;Foster, Richard I.;Lee, Keun-Young
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.738-745
    • /
    • 2019
  • Coprecipitation using hydrous ferric oxide (HFO) has been effectively used for the removal of radionuclides from radioactive wastewater. This work studied the dynamic behavior of HFO floc formation during the neutralization of acidic ferric iron in the presence of several radionuclides by using a photometric dispersion analyzer (PDA). Then the coagulation-flocculation system using HFO-anionic poly acrylamide (PAM) composite floc system was evaluated and compared in seawater and distilled water to find the effective condition to remove the target nuclides (Co-60, Mn-54, Sb-125, and Ru-106) present in wastewater generated in the severe accident of nuclear power plant like Fukushima Daiichi case. A ferric iron dosage of 10 ppm for the formation of HFO was suitable in terms of fast formation of HFO flocs without induction time, and maximum total removal yield of radioactivity from the wastewater. The settling time of HFO flocs was reduced by changing them to HFO-PAM composite floc. The optimal dosage of anionic PAM for HFO-anionic PAM floc system was approximately 1-10 ppm. The total removal yield of Mn-54, Co-60, Sb-125, Ru-106 radionuclides by the HFO-anionic PAM coagulation-flocculation system was higher in distilled water than in seawater and was more than 99%.

Synthesis of Yttrium Iron Garnet Powder by Homogeneous Precipitation and its Crystallization (균일침전법에 의한 Yttrium Iron Garnet 분말의 합성 및 결정화)

  • 안영수;한문희;김종오
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.693-699
    • /
    • 1996
  • YIG precursor powder was obtained by homogeneous precipitation in chloride salt solution by thermal decom-position of urea. It was found that ferric ions precipitated prior to yttrium ions. The precipitate was minute and spherical in shape. The precipitate formed consisted of the mixture of amorphous and ferric oxyhydroxide. Crystallization of YIG was proceeded by solid state reaction of intermediate YFeO3 and Fe2O3 in the temperature range of 85$0^{\circ}C$ to 140$0^{\circ}C$. Single phase of YIG was obtained by heat-treatment of the powder at 140$0^{\circ}C$ for 6 hrs in air. The powder calcined was molded into pellets and sintered in air. The maximum density of 4,92 g/cm3(95.1% of theoretical density) was obtainable for the pellet sintered at 145$0^{\circ}C$ using the powder calcined at 90$0^{\circ}C$.

  • PDF