• 제목/요약/키워드: Ferric iron

검색결과 187건 처리시간 0.024초

Enhance degradation of insecticide chlorpyrifos by iron salts and potassium persulfate during zerovalent iron treatment in aqueous solution

  • Rahman, M. Mokhlesur;Hwang, Jung-In;Kwak, Se-Yeon;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • 제61권4호
    • /
    • pp.383-389
    • /
    • 2018
  • Degradation of the insecticide O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate (chlorpyrifos) in aqueous solution was investigated using iron salts and potassium persulfate during ZVI treatment through a series of batch experiments. The degradation rate of chlorpyrifos increased with increases in the concentrations of iron salts and potassium persulfate in the aqueous system. Ferric chloride was found to be the most effective iron salt for the ZVI-mediated degradation of chlorpyrifos in aqueous solution. Further, the iron salts tested could be arranged in the following order in terms of their effectiveness: $FeCl_3$> $Fe_2(SO_4)_3$> $Fe(NO_3)_3$. The persulfate-ZVI system could significantly degrade chlorpyrifos present in the aqueous medium. This revealed that chlorpyrifos degradation by treatment with $Fe^0$ was promoted on adding ferric chloride and potassium persulfate. The kinetics of the degradation of chlorpyrifos by persulfate-amended $Fe^0$ was higher than that for iron-salt-amended $Fe^0$. This suggests that using a sequential $Fe^0$ reduction-ferric chloride or $Fe^0$ reduction-persulfate process may be an effective strategy to enhance the removal of chlorpyrifos in contaminated water.

Experimental Simulation of Iron Oxide Formation on Low Alloy Steel Evaporator Tubes for Power Plant in the Presence of Iron Ions

  • Choi, Mi-Hwa;Rhee, Choong-Kyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2577-2583
    • /
    • 2009
  • Presented are the formation of iron oxide layers on evaporator tubes in an actual fossil power plant operated under all volatile treatment (AVT) condition and an experimental simulation of iron oxide formation in the presence of ferrous and ferric ions. After actual operations for 12781 and 36326 hr in the power plant, two iron oxide layers of magnetite on the evaporator tubes were found: a continuous inner layer and a porous outer layer. The experimental simulation (i.e., artificial corrosion in the presence of ferrous and ferric ions at 100 ppm level for 100 hr) reveals that ferrous ions turn the continuous inner oxide layer on tube metal to cracks and pores, while ferric ions facilitate the production of porous outer oxide layer consisting of large crystallites. Based on a comparison of the oxide layers produced in the experimental simulation with those observed on the actually used tubes, we propose possible routes for oxid layer formation schematically. In addition, the limits of the proposed corrosion routes are discussed in detail.

철환원 미생물을 이용한 3가 철의 환원에 관한 연구 (Microbial Reduction of Iron(III) Oxides: Implication for Permeable Reactive Barriers.)

  • 임현정;박재우
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.250-253
    • /
    • 2002
  • Remediation of groundwater using zero valent iron filings has received considerable attention in recent years. However, zero valent iron is gradually transformed to iron(III) oxides at permeable reactive barriers, so the reduction of iron(III) oxides can enhance the longevity of the reactive barriers. In this study, microbial reduction of Fe(III) was performed in anaerobic condition. A medium contained nutrients similar to soil solution. The medium was autoclaved and deoxygenated by purging with 99.99% $N_2$ and pH was buffered to 6, while the temperature was regulated as 2$0^{\circ}C$. Activity of iron reducing bacteria were not affected by chlorinated organics but affected by iron(III) oxide. Although perchloroethylene(PCE) was not degraded with only ferric oxide, PCE was reduced to around 50% with ferric oxide and microorganism. It shows that reduced iron can dechlorinate PCE.

  • PDF

Effect of Batch Melting Temperature and Raw Material on Iron Redox State in Sodium Silicate Glasses

  • Mirhadi, Bahman;Mehdikhani, Behzad
    • 한국세라믹학회지
    • /
    • 제48권2호
    • /
    • pp.117-120
    • /
    • 2011
  • In this study, the redox state of iron in sodium silicate glasses was varied by changing the melting conditions, such as the melting temperature and particle size of iron oxide. The oxidation states of the iron ion were determined by wet chemical analysis and UV-Vis spectroscopy methods. Iron commonly exists as an equilibrium mixture of ferrous ions, $Fe^{2+}$, and ferric ions $Fe^{3+}$. In this study, sodium silicate glasses containing nanoparticles of iron oxide (0.5% mol) were prepared at various temperatures. Increase of temperature led to the transformation of ferric ions to ferrous ions, and the intensity of the ferrous peak in 1050 nm increased. Nanoparticle iron oxide caused fewer ferrous ions to be formed and the $\frac{Fe^{2+}}{Fe^{3+}}$ equilibrium ratio compared to that with micro-oxide iron powder was lower.

Photobacterium leiognathi LuxG 단백질의 철(III) 이온 환원 효소 활성도 (Ferric iron reductase activity of LuxG from Photobacterium leiognathi)

  • 이의호;남기석;이선광;오동현;이찬용
    • 미생물학회지
    • /
    • 제52권4호
    • /
    • pp.495-499
    • /
    • 2016
  • 본 연구에서는 발광 세균에 존재하는 LuxG 단백질의 효소학적 성질을 알아내기 위하여 Photobacterium leiognathi ATCC 25521의 luxG 유전자를 중합효소연쇄반응으로 증폭시켜 T5 프로모터와 6X His-tag 시스템을 지닌 pQE 벡터에 삽입시킨 재조합플라스미드를 제조하여 대장균에 형질전환 후 과발현시켜 단백질을 분리, 정제 하였다. 정제된 단백질의 효소학적 실험 결과, 이 단백질은 FMN과 NADPH 기질에 대한 ferric iron reductase의 기능을 갖고 있음을 확인하였으며 이들 기질에 대한 효소 활성도 상수 $K_m$$V_{max}$ 값을 결정하였다.

Fluorine-19 NMR Spectroscopic Studies of Phenyl-fluorinated Iron Tetraarylporphyrin Complexes

  • Song, Byung-Ho;Yu, Byung-soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권7호
    • /
    • pp.981-985
    • /
    • 2003
  • Fluorine-19 NMR solution measurements have been made for various phenyl-fluorinated iron porphyrin complexes. Large chemical shifts for phenyl fluorine signals of iron(III) and iron(II) are observed, and these signals are sensitive to electronic structure. The chemical shift differences in ortho-phenyl fluorine signals between high-spin ferric and low-spin ferric tetrakis(pentafluorophenyl)porphyrins are approximately 40 ppm, whereas the differences are approximately 7 ppm between high- and low-spin states of ferrous tetrakis(pentafluorophenyl)porphyrin complexes. Analysis of fluorine-19 isotropic shifts for the iron(III) tetrakis(pentafluorophenyl) porphyrin using fluorine-19 NMR indicates there is a sizable contact contribution at the ortho-phenyl fluorine ring position. Large phenyl fluorine-19 NMR chemical shift values, which are sensitive to the oxidation and spin states, can be utilized for identification of the solution electronic structures of iron(III) and iron(II) porphyrin complexes.

산화철과 환원철이 인삼의 갈반형 황증 발생에 미치는 영향 (Effect of Ferric and Ferrous Iron Irrigation on Brown-Colored Symptom of Leaf in Panax ginseng C. A. Meyer)

  • 이성우;박기춘;이승호;장인복;박경훈;김미란;박진면;김기홍
    • 한국약용작물학회지
    • /
    • 제22권1호
    • /
    • pp.32-37
    • /
    • 2014
  • To study the cause of physiological disorder in leaf of ginseng cultivated at paddy soil, the degree of brown-colored symptom (BCS) and the contents of inorganic matter in leaf were investigated by irrigating the solution of ferric and ferrous iron of 0.1 ~ 2.0%, and citric acid of 1.0 ~ 4.0% on bed soil, respectively. Ratio of BCS by variety was as high as 85.0% in Yoenpoong, while it was as low as 5.4%, 7.5% in Chunpoong and Hwangsook, respectively. The contents of inorganic matter of leaf in Yoenpoong were lower in $P_2O_5$, Ca, and Mg, while it were higher in K, Fe, and Mn than other variety. Iron solution caused BCS more distinctly when each ferric and ferrous iron were dissolved with 1.0% citric acid than when each iron was dissolved without citric acid. Ferric iron caused BCS more effectively than ferrous iron. BCS occurred in 4.0% citric acid was as same as 2.0% ferric iron mixed with 1.0% citric acid. Low $P_2O_5$ and high Fe content in leaf appeared in both of artificial and natural symptoms. We concluded that excessive Fe uptake caused BCS to leaf because the solubility of iron was increased in condition of low soil pH.

운모표면에 대한 $\alpha$산화철 흡착 (Adsorption of $\alpha$-Fe2O3 on the Surface of Mica Particles)

  • 김대웅;조동희;김명숙;박면용
    • 한국세라믹학회지
    • /
    • 제24권3호
    • /
    • pp.215-222
    • /
    • 1987
  • ${\alpha}$-Ferric Hydrous Oxide and ${\alpha}$-Ferric Oxide were obtained as following processes that Ferric Nitrate solution was adjusted to pH 6-8 with Ammonium Hydroxide, refluxed the Iron precipitate for 1 hr. at 80$^{\circ}C$, washed it with water and Methanol (95%), dried it to obtain ${\alpha}$-Ferric Hydrous Oxide at 60$^{\circ}C$, and then heated in atmosphere to prepare ${\alpha}$-Ferric Oxide for 1 hr. at 450$^{\circ}C$. Mica particles cleaned with ultrasonicator (45KHz) in water were mixed with Ferric Nitrate solution and treated it to adsorb ${\alpha}$-Ferric Oxide on the surface of mica particles by using the abovementioned processes, but the heated temperature was at 500$^{\circ}C$. The maximum wavelength of reflected light on the surface of mica-${\alpha}$-Ferric Oxide (50%) was appeared at 546nm but -Ferric Oxide free mica only was at 436 nm. The maximum wavelength was shifted to longer when the weight ratios of ${\alpha}$-Ferric Oxide to mica was changed from 1% to 50%.

  • PDF

황환원균과 3가철을 이용한 Trichloroethylene의 제거에 관한 연구 (Trichloroethylene Removal Using Sulfate Reducing Bacteria and Ferric Iron)

  • 황기철;민지은;박인선;박재우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제13권1호
    • /
    • pp.24-31
    • /
    • 2008
  • 혼합균에서 분리 배양한 황환원균에 의해 발생되는 황화수소가 염소계유기오염물질인 트리클로로에틸렌의 환원에 어떠한 영향을 미치는지, 또한 염소계유기오염물질에 대한 환원력이 있다고 알려진 2가철은 황화수소가 존재할 경우 트리클로로에틸렌의 환원과 어떠한 관계에 있는지를 알아보기 위하여 본 실험을 수행하였다. 황환원균에 독성을 나타내지 않는 수준의 트리클로로에틸렌의 농도에서 황화수소 발생 및 트리클로로에틸렌의 분해 실험을 수행한 결과 황산염의 환원으로 발생한 황화수소의 농도는 4.38 mM, 트리클로로에틸렌의 농도는 큰 변화가 없는 것으로 관찰되었으며 이를 통하여 황환원균에 의해 발생되는 황화수소의 농도가 트리클로로에틸렌을 환원시키기에는 부족하다는 것을 알 수 있었다. 그러나 황화수소의 농도가 위 실험에서 발생된 농도보다 100배 정도 높을 경우(438 mM)에는 트리클로로에틸렌에 대한 환원력이 있음을 확인하였다. 대표적인 산화철인 $Fe_2O_3$(3가철)를 첨가하였을 경우, 황환원균의 생장에 따라 황화수소, 2가철 및 트리클로로에틸렌의 농도변화를 관찰하였으며 이를 통하여 황환원균에 의해서 발생된 황화수소가 산화되면서 3가의 산화철을 2가철로 환원시키고 황화수소에 의하여 환원된 2가철이 트리클로로에틸렌을 분해하여 농도를 감소시키는 것을 확인하였다. 위의 실험결과를 바탕으로 낮은 농도의 황화수소는 트리클로로에틸렌의 환원에 영향을 미치지 못하며 다만, 황화수소에 의해 환원된 2가철이 트리클로로에틸렌을 분해시키는 주요한 요인임을 알 수 있었다. 또한 실제 해수중에서 황환원균과 $Fe_2O_3$가 공존할 경우의 트리클로로에틸렌의 제거 효과를 살펴보기 위한 실험을 한 결과 황환원균이 황화수소를 생성하여 트리클로로에틸렌의 제거에 영향을 줄 수 있는 반응들은 황환원균 생장에 필수적인 탄소원의 농도가 확보될 때 가능하다는 결론을 얻을 수 있었다.

황산제일철과 황산제이철을 이용한 산화철 합성 (Synthesis of Iron Oxide Using Ferrous and Ferric Sulfate)

  • 엄태형;;김삼중;서동수
    • 한국재료학회지
    • /
    • 제20권6호
    • /
    • pp.301-306
    • /
    • 2010
  • The chemical formula of magnetite ($Fe_3O_4$) is $FeO{\cdot}Fe_2O_3$, t magnetite being composed of divalent ferrous ion and trivalent ferric ion. In this study, the influence of the coexistence of ferrous and ferric ion on the formation of iron oxide was investigated. The effect of the co-precipitation parameters (equivalent ratio and reaction temperature) on the formation of iron oxide was investigated using ferric sulfate, ferrous sulfate and ammonia. The equivalent ratio was varied from 0.1 to 3.0 and the reaction temperature was varied from 25 to 75. The concentration of the three starting solutions was 0.01mole. Jarosite was formed when equivalent ratios were 0.1-0.25 and jarosite, goethite, magnetite were formed when equivalent ratios were 0.25-0.6. Single-phase magnetite was formed when the equivalent ratio was above 0.65. The crystallite size and median particle size of the magnetite decreased when the equivalent ratio was increased from 0.65 to 3.0. However, the crystallite size and median particle size of the magnetite increased when the reaction temperature was increased from $25^{\circ}C$ to $75^{\circ}C$. When ferric and ferrous sulfates were used together, the synthetic conditions to get single phase magnetite became simpler than when ferrous sulfate was used alone because of the co-existence of $Fe^{2+}$ and $Fe^{3+}$ in the solution.