• Title/Summary/Keyword: Fermented turmeric

Search Result 13, Processing Time 0.019 seconds

Anti-oxidative and Anti-inflammatory Activities of Fermented Turmeric (Curcuma longa L.) by Rhizopus oryzae (Rhizopus oryzae으로 발효한 울금의 항산화 및 항염효과)

  • Kim, Eun-Ju;Song, Bit-Na;Jeong, Da-Som;Kim, So-Young;Cho, Yong-Sik;Park, Shin-Young
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1315-1323
    • /
    • 2017
  • Turmeric is a rhizomatous herbaceous perennial plant (Curcuma longa (CL)) of the ginger family, Zingiberaceae. A yellow-pigmented fraction isolated from the rhizomes of CL contains curcuminoids belonging to the dicinnamoyl methane group. Curcumin is an important active ingredient responsible for the biological activity of CL. However, CL is not usually used as a food source due to its bitter taste. The present study was designed to determine the effect of the CL fermented by Rhizopus oryzae (FCL) on pro-inflammatory factors such as nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), tumor necrosis factor alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 cell line. The cell viability was determined by MTT assay. To evaluate the anti-inflammatory effect of FCL 80% EtOH extracts, IL-6 and $TNF-{\alpha}$ were measured by ELISA kit. Also, the amount of $NO/PGE_2/NF-{\kappa}B$ was measured using the $NO/PGE_2/NF-{\kappa}B$ detection kit and the iNOS/COX-2 expression was measured by Western blotting. The results showed that the FCL reduced NO, $PGE_2$, iNOS, COX-2, $NF-{\kappa}B$, IL-6 and $TNF-{\alpha}$ production without cytotoxicity. These results suggest that FCL extracts may be a developed the functional food related to anti-inflammation due to the significant effects on inflammatory factors.

Anti-Obesity Effect of Ethyl Acetate Fraction from 50% Ethanol Extract of Fermented Curcuma longa L. in 3T3-L1 Cells (발효울금 주정추출물부터 분리된 에틸아세테이트 분획물에 대한 3T3-L1 세포에서의 지방 형성 억제 효과)

  • Kim, Jihye;Park, Jeongjin;Jun, Woojin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1681-1687
    • /
    • 2014
  • In the present study, we investigated the effect of ethyl acetate fraction from 50% ethanol extract of fermented Curcuma longa L. (FCEE) on lipid metabolism in 3T3-L1 cells. The safety range of FCEE was up to $300{\mu}g/mL$. Effects of FCEE on lipid accumulation and intracellular triglyceride (TG) content in 3T3-L1 cells were examined by Oil Red O staining and AdipoRed assay. Compared to adipocytes, lipid accumulation and intracellular TG content were significantly reduced by 10.2% and 13.7%, respectively, upon FCEE treatment at a concentration of $200{\mu}g/mL$. Glucose uptake by 3T3-L1 cells was significantly reduced by 36.6% compared to adipocytes at a concentration of $200{\mu}g/mL$. On day 8, free glycerol release into the culture medium was significantly reduced compared to adipocytes at concentrations of 50, 100, and $200{\mu}g/mL$ of FCEE. FCEE significantly stimulated RNA expression of AMP-activated protein kinase (AMPK) and suppressed mRNA expressions of sterol regulatory element-binding protein-1c (SREBP-1c), CCAAT/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), and peroxisome proliferator- activated receptor ${\gamma}$ ($PPAR{\gamma}$) in 3T3-L1 cells. These results suggest that FCEE inhibits adipogenesis through activation of AMPK mRNA expressions and inhibition of SREBP-1c, $C/EBP{\alpha}$, and $PPAR{\gamma}$ mRNA expressions.

Antioxidant and Antimicrobial Activities of Curcuma aromatica Salisb. with and without Fermentation (일반강황과 발효강황의 항산화 및 항균 활성 특성)

  • Ra, Ha Na;Kim, Hae Young
    • Korean journal of food and cookery science
    • /
    • v.32 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • Purpose: Curcuma aromatica Salisb., commonly known as turmeric, has long been used as a powerful health-promoting anti-inflammatory or antioxidant that supports cellular health of the human body. The objective of this study was to compare the antioxidant and antimicrobial activities of the samples with or without fermentation. Methods: Antioxidant activities of the samples were compared using total phenol, flavonoid contents, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radical scavenging activity and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Antimicrobial activities were also examined using the paper disc method and minimum inhibitory concentration (MIC). Results: Organic acid content of the C. aromatica Salisb. fermented with Aspergillus oryzae (FCAS) showed a significantly higher value of 0.41% than that of the typical sample without fermentation (CAS) which showed a value of 0.27% (p<0.001). Total phenol and flavonoid contents of the CAS and FCAS did not show significant differences. However, ABTS cation radical scavenging activity and DPPH radical scavenging activity were significantly increased in the samples with fermentation (p<0.001, p<0.01), respectively. The samples of the disc showed inhibited growth of gram positive Bacillus cereus (FCAS 3.70 cm and CAS 2.73 cm) and Staphylococcus aureus (FCAS 2.70 cm and CAS 1.97 cm). MIC of the FCAS (0.25-0.50, 0.5-1.00 mg/mL) was higher than that of the CAS (1.00-2.00, 2.00-3.00 mg/mL), respectively. Conclusion: C. aromatica Salisb. with fermentation showed higher antioxidant and antimicrobial activities in this study. Thus we conclude that fermentation can be a helpful process for more effective application of C. aromatica Salisb. with fermentation in the health-promoting food industry.