• Title/Summary/Keyword: Fermentation quality

Search Result 1,840, Processing Time 0.026 seconds

Microbiological and Physicochemical Quality Characteristics of Low-salted Sauerkraut (fermented cabbage) (저염 Sauerkraut (fermented cabbage)의 미생물 및 이화학적 품질 특성)

  • Ji, Hye-In;Kim, Kyung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.1
    • /
    • pp.61-72
    • /
    • 2022
  • This study investigated the minimum salt concentration required for achieving the optimal quality characteristics of sauerkrauts made by adding 0.5, 1.0, 1.5, 2.0, and 2.5% (w/w) of sea salt to cabbage according to the fermentation period. For evaluating the quality characteristics, we measured the microorganisms (lactic acid bacteria, yeast, and coliform group), pH, total acidity, salinity, chromaticity, and hardness every 24 hours. The lactic acid bacteria were identified and analyzed, and acceptance test was carried out on the 4th day of fermentation. The results showed that the salinity of 0.5, 1.0, 1.5, and 2.0% sauerkrauts on the 4th day of fermentation was lower than the average salinity of Baechu-Kimchi. The 0.5, 1.0, 1.5, and 2.0% sauerkrauts had significantly higher lactic acid bacteria than the 2.5% sample, and the coliform group was not detected after the 5th day of fermentation. Among the microbes identified, Weissella cibaria JCM 12495 was found only in domestic sauerkraut, in addition to Lactococcus lactis NCDO 604, Leuconostoc citreum JCM 9698, and Lactobacillus sakei DSM 20017. The results of the acceptance test show that 1.0 and 1.5% sea salt sauerkraut had significantly higher overall acceptance compared to the other samples. In conclusion, sauerkraut with a salt concentration of 1.0 and 1.5% (w/w) had abundant lactic acid bacteria and excellent sensory properties, suggesting that the production of low-salted sauerkraut can be adopted to reduce consumer salt intake in the future.

Optimum condition of Acetic acid Fermentation for Persimmon Vinegar Preparation and Quality evaluation of Persimmon Vinegar (감식초 제조를 위한 초산발효 최적 조건 및 감식초의 품질특성)

  • 정석태;김지강
    • Food Science and Preservation
    • /
    • v.3 no.2
    • /
    • pp.171-178
    • /
    • 1996
  • This study was carried out for the purpose of improving the persimmon vinegar. The acetic acid bacteria strain JST-3, using acetic acid fermentation was isolated from the traditional persimmon vinegar. The optimum conditions for high yield of acetic acid were studied in the shaking bath. Acetic acid bacteria was cultured at 3$0^{\circ}C$ for 4 days and transferred to persimmon alcoholic juice for acetic acid fermentation. The optimum initial acidity for acetic acrid fermentation was 1%(w/v) and the addition of glucose or yeast extract was observed to produce relatively low yield of acetic acid. Succinic and acetic acid were major organic acid in the persimmon vinegar, The contents of lactic acid which was known to increase off-flavor were very low. Sensory evaluation revealed that the persimmon vinegar prepared in this study was superior to two commercial ones in the aroma and taste.

  • PDF

Role of Fermentation in Improving Nutritional Quality of Soybean Meal - A Review

  • Mukherjee, Runni;Chakraborty, Runu;Dutta, Abhishek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1523-1529
    • /
    • 2016
  • Soybean meal (SBM), a commonly used protein source for animal feed, contains anti-nutritional factors such as trypsin inhibitor, phytate, oligosaccharides among others, which limit its utilization. Microbial fermentation using bacteria or fungi has the capability to improve nutritional value of SBM by altering the native composition. Both submerged and solid state fermentation processes can be used for this purpose. Bacterial and fungal fermentations result in degradation of various anti-nutritional factors, an increase in amount of small-sized peptides and improved content of both essential and non-essential amino acids. However, the resulting fermented products vary in levels of nutritional components as the two species used for fermentation differ in their metabolic activities. Compared to SBM, feeding non-ruminants with fermented SBM has several beneficial effects including increased average daily gain, improved growth performance, better protein digestibility, decreased immunological reactivity and undesirable morphological changes like absence of granulated pinocytotic vacuoles.

Effect of Mono Sodium Glutamate on the Fermentation of Korean Cabbage Kimchi (배추김치의 숙성에 미치는 Mono Sodium Glutamate의 영향)

  • 장경숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.4
    • /
    • pp.342-348
    • /
    • 1990
  • Effects of various monosodium glutamate(MSG_ concentration (0-400mg%) on the quality of Korean cabbage kimchi during fermentation at 2$0^{\circ}C$ were investigated. The growth of lactic acid bacteria titratable acidity pH content of thiamine ascorbic acid $\beta$-carotene and sensory evaluation were observed in the presencve of MSG. Titratable acidity was increased in the kimchi contained MSG during the fermentation.l Wheeas the changes of pH in the kimchi contained MSG were similar to those in control, Maximum growth of lactic acid bacteria was observed after 49 hour of fermentation in kimchi contained with 200mg MSG. The might be due to the fact that MSG was given optimum pH for acid bacteria growth because of its buffering action. Therefore the periods of kimchi fermentation were reduced by addition of MSG, MSG also affected on the stability of ascorbic acid thiamine and $\beta$-carotene. According of MSG. MSG also affected on the stability of ascorbic acid thiamine and $\beta$-carotene. According to sensory evaluation MSG reduced sour taste in kimchi which increased edible periods.

  • PDF

Fermentation and Quality Characteristics of Kimchi Prepared Using Various Types of Maesil(Prumus mume Sieb. et Zucc) (매실의 첨가 형태에 따른 배추김치의 발효 및 품질 특성)

  • Kim, Gyu-Ran;Park, La-Young;Lee, Shin-Ho
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.214-222
    • /
    • 2010
  • The fermentation and quality characteristics of kimchi prepared using various types of maesil, including freshly sliced maesil (FSM), freshly ground maesil (FGM),and dried maesil powder (MP), were investigated during 25-day fermentation at 10C. The pH value decreased rapidly in the control fermentation but only slowly in maesil-supplemented kimchi. Titratable acidity values changed in the same manner. The addition of maesil significantly inhibited the growth of total aerobes, and lactic acid bacteria during fermentation over 10 days. The color (L, a, and b values) of kimchi did not differ between control and maesil-supplemented kimchi samples regardless of maesil type or concentration. Kimchi hardness did not initially differ among the various samples but decreased during fermentation. However, the hardness of maesil-supplemented kimchi was higher than that of control samples. Thus, kimchi supplemented with either 6% (w/w) MP or 6% (w/w) FGM maintained optimal hardness during fermentation. The antioxidant activity of kimchi was increased in a dose-dependent manner by addition of maesil. Kimchi supplemented with 6% (w/w) FGM showed the highest antioxidant activity. The sensory qualities (taste, flavor, color, and overall acceptability) of FSM-supplemented kimchi were better than those of control samples.

Effect of Fermentation Temperature on Quality Characteristics of Apple Wine (발효온도가 사과와인 품질 특성에 미치는 영향)

  • Kwak, Han Sub;Seo, Jae Soon;Bae, Haejung;Lee, Hwajong;Lee, Youngseung;Jeong, Yoonhwa;Kim, Misook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.155-159
    • /
    • 2016
  • The objective of this study was to investigate the effect of fermentation temperature on quality characteristics of apple wine. Apple wine mashes were fermented in 15, 20, and $25^{\circ}C$ water bathes for 9 days. The pH levels of all samples were below 4 from 24 h of fermentation until the end. Total acidities of 0.05% acetic acid solution were 7.8, 7.4, and 7.0% in the 15, 20, and $25^{\circ}C$ fermented samples, respectively. The evaporation of esters generated by combining alcohol and organic acids might be the reason for lower total acidity for high temperature fermentation. Alcohol contents of the 20 and $25^{\circ}C$ fermented samples were 6.5 and 6.6% (v/v), respectively, whereas that of the $15^{\circ}C$ fermented sample was 5.6% (v/v) and significantly lower than the others (P<0.05). Methanol contents were 0.68, 0.82, and 1.69 mg/L in the 15, 20, and $25^{\circ}C$ fermented samples, respectively. Fermentation at higher temperatures generated higher methanol content in apple wine. On the other hand, acetaldehyde contents were 3.43, 2.39, and 1.02 mg/L in the 15, 20, and $25^{\circ}C$ fermented samples, respectively, due to the lower boiling point of acetaldehyde ($20.2^{\circ}C$). Based on the results, a fermentation temperature of $20{\sim}25^{\circ}C$ is effective for apple wine fermentation.

Quality Characteristics of Buckwheat (Fagopyrum esculentum) Soksungjang (메밀을 이용한 속성장의 품질특성)

  • Choi, Hye-Sun;Lee, Sung-Young;Baek, Sung-Yeol;Koo, Bon-Sung;Yoon, Hyang-Sik;Park, Hye-Young;Yeo, Soo-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.77-82
    • /
    • 2011
  • This study was conducted to provide information for improving the quality characteristics of Buckwheat Soksungjang (BWS). We determined aminotype nitrogen content, total microbial flora counts, the population of Bacillus cereus, presence of volatile compounds, fibrinolytic activity, antioxidant activity, ACE inhibition rate, and a sensory evaluation. The aminotype nitrogen increased gradually during fermentation. We found a decreasing population of B. cereus during fermentation, thus, the edible period for BWS was more than 30 days after fermentation. Acetaldehyde, butanol, and pyrazine were detected as volatile compounds after fermentation. The fibrinolytic activities of a 10% BWS water extract were high at 120.8 units compared to the control (71.6 units). In a sensory evaluation, Soksungjang with 60% added BW showed a significantly higher score (p < 0.001) for color, taste, smell, texture, and overall. The results suggest that a new type of shortened fermented soybean paste had good safety, bioactivities, and sensory characteristics within 4 weeks.

Optimum Fermentation Conditions and Fermentation Characteristics of Mulberry (Morus alba) Wine (오디(Morus alba) 와인의 최적 발효조건 및 발효 특성)

  • Kim, Yong-Suk;Jeong, Do-Yeong;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.63-69
    • /
    • 2008
  • For the development of mulberry wine, we investigated its optimum fermentation conditions as well as quality changes during fermentation. The physicochemical characteristics of the mulberry fruit used in the study were pH 4.56, 0.50% titratable acidity, and 13.0 $^{circ}Brix$ soluble solids. The mulberry wine fermented with Saccharomyces cerevisiae KCCM 12224 (Sc-24) at 24 $^{circ}Brix$ soluble solids and $26^{circ}C$ showed excellent characteristics in terms of ethanol production, titratable acidity, and redness. The sucrose, fructose, and glucose contents of the mulberry wine drastically decreased with fermentation time. The citric acid content was maintained during the fermentation period, and malic acid decreased, but lactic and succinic acids increased. The cyanidin-3-glucoside content, a major anthocyanin pigment, of the mulberry wine drastically decreased from 195.5 mg% at the initial stage of fermentation to 15.37 mg% at 2 days of fermentation. However, cyanidin-3-rutinoside decreased gradually. In summary, a mulberry wine of high quality was made by fermentation for 8 days at $26^{\circ}C$ using mashed mulberry fruit containing $24^{\circ}Brix$ soluble solids, after adding 200 ppm $K_2S_2O_5$ and inoculating with 3%(v/v) Sc-24.

Effects of Lactic Acid Bacteria Inoculants on Fermentation of Low Moisture Fresh Rice Straw Silage at Different Storage Periods

  • Kuppusamy, Palaniselvam;Soundharrajan, Ilavenil;Park, Hyung Soo;Kim, Ji Hea;Kim, Won Ho;Jung, Jeong Sung;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.165-170
    • /
    • 2019
  • The purpose of this study was to analyze the effectiveness of different storage periods of lactic acid bacteria (LAB)-fermented low moisture fresh rice straw silage. The low moisture fresh rice straw sample was inculcated with LAB and stored for different storage periods such as 45, 90, and 365 days, respectively. The low moisture fresh rice straw (LMFRS) silage inoculated with LAB exhibited reduction in pH throughout the fermentation as compared with the control (P<0.05). The lactic acid content was increased at the late fermentation period (90 and 365 days, respectively) in LAB inoculated LMFRS silage as compared with the control (P<0.05). In contrast, the acetic acid and butyric acid concentrations were slightly reduced in the LAB inoculated LMFRS silage sample at 90 and 365 days fermentation, respectively. Meanwhile, the non-inoculated LMFRS silage showed higher amounts of acetic acid and butyric acid at an extended fermentation with low bacterial population as compared with the LAB inoculated LMFRS silage. However, lactic acid concentration was slightly high in the non-inoculated LMFRS silage at early 45 days fermentation. Additionally, the nutrient profile such as crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF), and total digestibility nutrients (TDN) were not significantly different in control and LAB inculcated samples during all fermentation. Though, the microbial population was greater in the LAB inoculated LMFRS silage as compared with the control. However, the massive population was noted in the LAB inoculated LMFRS silage during all fermentation. It indicates that the inoculated LAB is the main reason for increasing fermentation quality in the sample through pH reduction by organic acids production. Overall results suggest that the LAB inoculums are the effective strain that could be a suitable for LMFRS silage fermentation at prolonged days.

Effect of Colored Barley Flours on Quality Characteristics of Fermented Yogurt by Lactobacillus spp.

  • Lee, Nayoung;Lee, Mi-Ja
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.66-72
    • /
    • 2014
  • Quality characteristics of yogurt with added colored barely flour was investigated during fermentation by lactic acid bacteria. Chemical properties such as moisture, crude protein, starch, ash and ${\beta}$-glucan contents was measured. pH, acidity, brix, Hunter color value and growth of lactic acid bacteria in yogurt was investigated during fermentation by L. acidophilus, L. bulgaricus, and S. thermophilus mixed culture. Crude protein contents of Daeanchal and Boseokchal was 16.16 and 12.17%, respectively. Starch contents of daeanchal were shown lower score. The pH of yogurt by addition of barley flour (Daeanchal) addition 0 and 20% were 6.66 and 6.40, respectively. The pH of yogurt supplemented with barley flour tended to be lower than before control which was not added barely flours and oligosaccharide in yogurt. Titratable acidity of yogurt added barley flour was higher compared with that of control. Brix of yogurt was decreased during fermentation by lactic acid bacteria. Lightness of yogurt added barley flour (Daeanchal) addition 0 and 20% were 83.25 and 69.83, respectively. The original microbial population of the yogurt during 0, 5, 8, and 15 hr fermentation were 7.48, 7.79, 8.15, and 8.71 Log CFU/g, respectively. Moreover, the addition of colored barley flour was to promote the proliferation of lactic acid bacteria in yogurt. In our research, addition of colored barley flours added into the yogurt may also have contributed to growth of lactic acid bacteria.