• Title/Summary/Keyword: Fermentation condition

Search Result 611, Processing Time 0.035 seconds

A Study on the Fermentation Characteristics of Garbages by the C/N Ratio Control using Kudzu Creeper and Sawdust (칡넝쿨 및 톱밥을 이용한 C/N비 조절에 따른 음식물찌꺼기의 발효특성에 관한 연구)

  • 박진식;안철우;문추연
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.24-30
    • /
    • 2000
  • In this study, to determine the optimum fermentation process for the feed production of food wastes and estimate the practical value of fermented feed using kudzu creeper and sawdust as bulking agent. This study considered initial C/N ratio control as the fermentation process variables. The result are summarized as follows. Minimum water contents of byproducts in the fermentation feed production showed 39%(kudzu), 37%(sawdust) at the C/N ratio 25 and 45%(kudzu, sawdust) at the C/N ratio 35. Temperature variations in the fermentation feed production at the C/N ratio 25 indicated $68^{\circ}C$(kudzu), $70^{\circ}C$(sawdust). Optimum condition of fermentation process of water content, C/N ratio and permeability (porous structure of the mixture). For optimum fermentation gravitationally dewatered garbage, the proper mixing ratios of kudzu(moisture contents : 17.3%) and sawdust(moisture contents : 13.2%) were 41% and 39%, respectively. Major biological reaction in the aerobic fermentation feed production occurred during 12~24hrs.

  • PDF

Characteristics of Sunroot (Helianthus tuberosus) Fermentation with boundary condition (발효조건에 따른 돼지감자의 발효시스템)

  • Chung, Sung Won;Woo, Ji Hee;Choi, Won Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.411-417
    • /
    • 2017
  • In this study, Sunroot was used as material in the fermentation process. Sunroot are widely distributed in Korea, The main component is composed of inulin. Fermented vinegar stimulates digestion in the body, as well as to relieve stress is a cause of increasing the neurotransmitter-Serotonin of the body. Therefore, we conducted fermentation studies using sunroot. This research conducted seven days, and the pH and brix value analysis was done every 12 hours during fermentation process. The experimental results show that the fermentation product under blender treatment is better than cutting treatment and without cutting treatment. Initial brix 25% is the best treatment for fermentation because produce fermentation product with a good taste and aroma than other treatment.

Study on the Effects of Supplemented Factors on the Production of Vitamin $B_{12}$ by Propionibacterium shermanii (Propionibacterium shermanii에 의한 비타민 $B_{12}$의 생성에 영향을 미치는 배지첨가물들에 대한 연구)

  • Kim, Ji-Young;Kim, Kong-Hwan;Kim, Kyoung-Ja;Goo, Yang-Mo
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.614-620
    • /
    • 1994
  • Following the study on the fermentation conditions influencing the production of vitamin $B_{12}$ by Propionibacterium shermanii(Korean J Biotechnol. Bioeng. 7,126-131, 1992), the effects of some factors supplemented in the medium on the production of vitamin $B_{12}$ were studied. Maximum production of vitamin $B_{12}$ was observed when $Co^{+2}$ was supplemented at the concentration of 2-4 ppm in the fermentation medium. Increase of the supplemented $Co^{+2}$ to 12 ppm did not inhibit the growth of the organism, but it accelerated the lysis of the organism. In the literature, peptone was reported to activate the biosynthesis of vitamin $B_{12}$. Examination of the effect of peptone on the growth and the production of vitamin $B_{12}$ showed that at early stage more vitamin$B_{12}$ was observed in the supplemented medium, but no difference was observed in the later stage of fermentation. Examination of the time for addition and the amount of 5,6-dimethylbenzimidazole, a precursor known to influence the production of vitamin $B_{12}$, showed that a maximum yield of vitamin $B_{12}$ was observed when 15 mg/L was added to the fermentation medium after 2 days' incubation. The effect was comparable with the increase of the production of vitamin $B_{12}$ when the fermentation condition was changed to aerobic condition after 2 days' culture under anaerobic condition.

  • PDF

Effects of Temperature on Production of Hydrogen in Anaerobic Fermentation (혐기성 발효에서 수소 생산 시 온도의 영향에 관한 연구)

  • Kim, Choong-Gon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.467-475
    • /
    • 2007
  • This study was conducted to examine temperature effects on hydrogen production in anaerobic fermentation. 18 batch reactors were operated at mesophilic ($35^{\circ}C$) and thermophilic conditions ($55^{\circ}C$) to achieve maximum hydrogen production in anaerobic fermentation. Optimum hydrogen production conditions were also investigated at each temperature. Different trends were observed regarding pH effects on hydrogen production. This effect was not significant for mesophilic fermentation ($35^{\circ}C$). In this case, pH may not drop to interfere hydrogen production during the test. However, hydrogen production decreased without pH control for thermophilic condition ($55^{\circ}C$). Effects of heat treatment were observed for both fermentation process. Hydrogen production with heat treatment was higher than hydrogen production without heat treatment for both fermentation processes. The amount of produced hydrogen for each substrate concentration with temperature changes showed that more hydrogen was produced at $35^{\circ}C$ than at $55^{\circ}C$.

Fermentation Method of Kimchi Using Halophilic Lactobacillus sp. HL-48 and Lactic Acid (Halophilic lactobacillus sp. HL-48균주와 젖산을 이용한 김치의 제조 방법)

  • 최경숙;성창근;김명희;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.246-251
    • /
    • 1999
  • To extend the storage period and to inhibit contamination of Kimchi by Escherichia coli, conditions of Kimchi brining and effects of the fermentation starter, halophilic Lactobacillus HL-48 were investigated. Optimum brining condition for Kimchi was accomplished in 15% NaCl and at pH2.5-3.0 adjusted by lactic acid. Starter-treated Kimchi showed pH 4.2 after 18hr fermentation, while the pH of starter-untreated Kimchi resulted in 3.3. After 36hr fermentation, the number of E. coli in starter-treated Kimchi was found clearly to decrease and not detected macroscopically, but contamination of E. coli (5.3$\times$103CFU/ml) was observed in starter-untreated sample. Organic acids in Kimchi contained organic acids such as oxalic acid, citric acid, malic acid and lactic acid. among ther, lactic acid content was remarkably high in the early fermentation stages. However, from 24hr fermentation, lactic acid content of starter-untreated Kimchi was higher than that of starter-treated Kimchi.

  • PDF

Comparison of Liquid and Solid-State Fermentation Processes for the Production of Enzymes and Beta-Glucan from Hulled Barley

  • Lee, Se Yeon;Ra, Chae Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.317-323
    • /
    • 2022
  • Solid-state fermentation using hulled barley was carried out to produce enzymes and β-glucan. The one-factor-at-a-time experiments were carried out to determine the optimal composition of the basal medium. The modified synthetic medium composition in liquid-state fermentation was determined to be 70 g/l hulled barley, 0 g/l rice bran, 5 g/l soytone, and 6 g/l ascorbic acid. Optimal pretreatment conditions of hulled barley by solid-state fermentation were evaluated in terms of maximum production of fungal biomass, amylase, protease, and β-glucan, which were 1.26 mg/g, 31310.34 U/g, 2614.95 U/g, and 14.6% (w/w), respectively, at 60 min of pretreatment condition. Thus, the solid-state fermentation process was found to enhance the overall fermentation yields of hulled barley to produce high amounts of enzymes and β-glucan.

Double-stage Batch Fermentation of Beer I. Theoretical Background (이단회분식 맥주발효 I. 이론)

  • Pack, M.Y.
    • Microbiology and Biotechnology Letters
    • /
    • v.3 no.1
    • /
    • pp.31-34
    • /
    • 1975
  • Fermentation models of beer having higher efficiencies with a minimum change in conventional batch fermentation condition have been designed. By diluting the fermenting mass with one half or one third volume of fresh wort after three days of the conventional batch fermentation and completing the rest of the fermentation in five or four days, about 20 to 30 percent increase in the fermentation efficiency over the regular 9-day batch beer fermentation is theoretically feasible.

  • PDF

Hydrogen Fermentation of the Galactose-Glucose Mixture (갈락토스-글루코스 혼합당 수소 발효)

  • Cheon, Hyo-Chang;Kim, Sang-Youn
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.397-403
    • /
    • 2012
  • Galactose, an isomer of glucose with an opposite hydroxyl group at the 4-carbon, is a major fermentable sugar in various promising feedstock for hydrogen production including red algal biomass. In this study, hydrogen production characteristics of galactose-glucose mixture were investigated using batch fermentation experiments with heat-treated digester sludge as inoclua. Galactose showed a hydogen yield compatible with glucose. However, more complicated metabolic steps for galactose utilization caused a slower hydrogen production rate. The existence of glucose aggravated the hydrogen production rate, which would result from the regulation of galactose-utilizing enzymes by glucose. Hydrogen produciton rate at galactose to glucose ratio of 8:2 or 6:4 was 67% of the production rate for galactose and 33% for glucose, which could need approximately 1.5 and 3 times longer hydraulic retention time than galacgtose only condition and glucose only condition, respectively, in continuous fermentation. Hydrogen production rate, Hydrogen yield, and organic acid production at galactose to glucose ratio of 8:2 or 6:4 were 0.14 mL H2/mL/hr, 0.78 mol $H_2$/mol sugar, and 11.89 g COD/L, respectively. Galactose-rich biomass could be usable for hydogen fermenation, however, the fermentation time should be allowed enough.

Optimal Conditions for Propagation in Bottom and Top Brewing Yeast Strains

  • Cheong, Chul;Wackerbauer, Karl;Lee, Si-Kyung;Kang, Soon-Ah
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.739-744
    • /
    • 2008
  • The method of yeast propagation has an influence on yeast physiology, fermentation ability, flocculation rate, and taste stability of beer. In order to find optimal conditions for propagation, several parameters were investigated in combinations. The bottom brewing yeast grown at $10^{\circ}C$ indicated that a higher flocculation capacity during the $1^{st}$ fermentation. However, the taste stability and the aroma profile were not affected by parameters of propagation investigated. The beer quality was rather affected by storage duration. In addition, a correlation between tasting and chemiluminescence was found at the beer, which was produced using bottom brewing yeast. The propagation at $10-25^{\circ}C$ with addition of zinc ion indicated the best condition to improve fermentation ability, flocculation rate, and filterability for bottom brewing yeast, whereas the propagation at $30^{\circ}C$ with addition of zinc ion showed the best condition to increase fermentation ability for top brewing yeasts.