• Title/Summary/Keyword: Fenton Reaction

Search Result 201, Processing Time 0.022 seconds

Decolorization of Rhodamine B Using Quartz Tube Photocatalytic Reactor (석영관 광촉매 반응기를 이용한 Rhodamine B의 색도 제거)

  • Park Young Seek
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.358-365
    • /
    • 2004
  • The photocatalytic oxidation of Rhodamine B(RhB) was studied using photocatalytic reactor filled with module of quartz tube. Module of quartz tube consisted of small quartz tube (inner diameter, 1.5 mm; outer diameter, 3 mm) bundle coated with powder $TiO_2$ and uncoated large quartz tube (inner diameter, 20 mm; outer diameter, 22 mm). Two 30 W germicidal lamp was used as the light source and the reactor volume was 0.5 l. The effects of parameters such as the coating materials and numbers, initial concentration, $H_{2}O_2$ dose and metal deposition (Ag, Pt and Fe) and simultaneous application of $H_{2}O_2$ and metal deposition. The results showed that the initial reaction constant of quartz module coated with powder $TiO_2$ was higher 1.4 time than that of the $TiO_2$ sol and optimum coating number is twice. In order to increase reaction rate, simultaneous application of photocatalytic and photo-fenton reaction using Fe coating and dose $H_{2}O_2$ dose increased reaction rate largely.

Optimal Condition of Operation Parameter for Livestock Carcass Leachate using Fenton Oxidation Process (가축 사체 매몰지 침출수 처리를 위한 Fenton 산화공정의 최적조건)

  • An, Sang-Woo;Jeong, Young-Cheol;Yoo, Ji-Young;Min, Jee-Eun;Lee, Si-Jin;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.26-35
    • /
    • 2013
  • Outbreak of animal infectious diseases such as foot-and-mouth disease, avian influenza are becoming prevalent worldwide. For prevent the further infection, tremendous numbers of the infected or culled stocks are buried around farm. This burial method can generate a wide range of detrimental components such as leachate, nutrient, salt, and pathogenic bacteria, consequently. In this study, for the stabilization of livestock carcasses leachate, advanced oxidation processes utilizing the Fenton reaction was investigated in lab-scale experiments for the treatment for $COD_{Cr}$ of livestock carcass leachate. $COD_{Cr}$ reduction by the Fenton oxidation was investigated response surface methodology using the Box-Begnken methods were applied to the experimental results. A central composite design was used to investigate the effects of the independent variables of pH ($x_1$), dosage of $FeCl_2{\cdot}4H_2O$ ($x_2$) and dosage of $H_2O_2$ ($x_3$) on the dependent variables $COD_{Cr}$ concentration ($y_1$). A 1 M NaOH and $H_2SO_4$ was using for pH control, $FeCl_2{\cdot}4H_2O$ was used as iron catalyst and NaOH was used for Fenton reaction. The optimal conditions for Fenton oxidation process were determined: pH, dosage of $FeCl_2{\cdot}4H_2O$ and dosage of $H_2O_2$ were 3, 0.6 g (0.0151 M) and 7 mL(0.259 M), respectively. Statistical results showed the order of significance of the independent variables to be pH > initial concentration of ferrous ion > initial concentration of hydrogen peroxide.

Oxidative Damage of DNA Induced by the Cytochrome c and Hydrogen Peroxide System

  • Kim, Nam-Hoon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.452-456
    • /
    • 2006
  • To elaborate the peroxidase activity of cytochrome c in the generation of free radicals from $H_2O_2$, the mechanism of DNA cleavage mediated by the cytochrome c/$H_2O_2$ system was investigated. When plasmid DNA was incubated with cytochrome c and $H_2O_2$, the cleavage of DNA was proportional to the cytochrome c and $H_2O_2$ concentrations. Radical scavengers, such as azide, mannitol, and ethanol, significantly inhibited the cytochrome c/$H_2O_2$ system-mediated DNA cleavage. These results indicated that free radicals might participate in the DNA cleavage by the cytochrome c and $H_2O_2$ system. Incubation of cytochrome c with $H_2O_2$ resulted in a time-dependent release of iron ions from the cytochrome c molecule. During the incubation of deoxyribose with cytochrome c and $H_2O_2$, the damage to deoxyribose increased in a time-dependent manner, suggesting that the released iron ions may participate in a Fenton-like reaction to produce $\cdot$OH radicals that may cause the DNA cleavage. Evidence that the iron-specific chelator, desferoxamine (DFX), prevented the DNA cleavage induced by the cytochrome c/$H_2O_2$ system supports this mechanism. Thus we suggest that DNA cleavage is mediated via the generation of $\cdot$OH by a combination of the peroxidase reaction of cytochrome c and the Fenton-like reaction of free iron ions released from oxidatively damaged cytochrome c in the cytochrome c/$H_2O_2$ system.

Fenton Oxidation of Landfill Leachate by $Fe^0,\;Fe^{2+},\;Fe^{3+}\;/\;H_2O_2$ Systems ($Fe^0$, $Fe^{2+}$, $Fe^{3+}$ / $H_2O_2$ 시스템을 이용한 침출수의 Fenton 산화반응)

  • Park, Sung-Ho;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.402-408
    • /
    • 2005
  • This investigation aimed at selecting the optimum catalyst and reaction conditions used in Fenton oxidation for landfill leachate treatment and was carried out at ambient temperature using a lab-scale experiment. The investigation led to the following results: 1) The optimum pH and dose for each iron catalyst were as follows: $Fe^{2+}\;=\;1,200\;mg/L$, $H_2O_2\;=\;1,200\;mg/L$, initial pH=3.0; $Fe^{3+}\;=\;1,200\;mg/L$, $H_2O_2\;=\;1,500\;mg/L$, initial pH=4.5; $Fe^0\;=\;1,200\;mg/L$, $H_2O_2\;=\;900\;mg/L$, initial pH=4.0, respectively. 2) The progress of Fenton oxidation could be instrumentally monitored by measuring redox potential evolution during leachate oxidation, thus, indicating the possibility of an on-line process monitoring. 3) A simple acid-base titration of Fenton-treated leachate proved that a relevant fraction of by- products formed during the treatment was made of acidic compounds in the optimum reaction condition for each catalyst used, thus demonstrating that the higher the extent of Fenton oxidation the greater was the amount of acids formed. 4) With the aim of selecting the optimum catalyst among $Fe^0$, $Fe^{2+}$ and $Fe^{3+}$, removal efficiency of each parameter in the optimum reaction conditions was considered. Although $Fe^{3+}$ was higher than other catalysts($Fe^0$, $Fe^{2+}$) in removal efficiency, $Fe^0$ was a optimum catalyst with a view of cost effectiveness.

A Study on Reuse System of Dyeing Wastewater using Membrane (막을 이용한 염색폐수의 재활용 연구)

  • 서명포
    • Textile Coloration and Finishing
    • /
    • v.10 no.4
    • /
    • pp.45-52
    • /
    • 1998
  • Reuse of wastewater become an important consideration to solve the environmental pollution problems in recent industriallzation and urbanization. Especially, he characteristic of dyeing process is subject to use much water and thus has serious problems for removal of color and organic pollutants in their wastewater. This report is divided into two main parts : The purpose of the first part was to determine if alkaline wastewater discharged from textile dyeing operation factory could be flocculated directly by Fenton oxidation method. This study was conducted to investigate Fenton reagent dose and reaction condition of Fenton method as pretreatment for dyeing wastewater in K dyeing industry were investigated. In the second part of this research, to treat dyeing wastewater it was found that the most effective way is to use ultrafiltation and reverse osmosis at the conditions of the pH 7.0~8.0 and operating pressure of $2.5~35kg_f/cm^2$. This paper is mainly dealt with the application on reuse system of dyeing wastewater treatment using ultrafiltration and reverse osmosis membranes. The results showed that dyeing wastewater could be reused by chemical, filter and membrane sequential treatment process.

  • PDF

Applicable Feasibility of Fenton Oxidation and Zeolite Ion Exchange Processes for Removal of Non-Biodegradable Matters and Ammonia in Livestock Wastewater (축산폐수 중의 난분해성 물질 및 암모니아 제거를 위한 Fenton 산화와 Zeolite 이온교환 공정의 적용 가능성)

  • Cho, Chang-Woo;Kim, Byoung-Young;Chae, Soo-Choen;Chung, Paul-Gene
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.600-606
    • /
    • 2007
  • Livestock wastewater containing concentrated organic matters and nutrients has been known as one of the major pollutants. It is difficult to apply the conventional activated sludge process to treat livestock wastewater because of high Non-biodegradable (NBD) matter and ammonia. The objectives of this study are to remove NBD matters including aromatic compounds and ammonia in livestock wastewater using Coagulation-Fenton oxidation-Zeolite (CFZ) processes and ascertain applicable feasibility in the field through pilot plant experiment. NBD matters and color remained in the treated water were removed over 92% by Fenton oxidation as the second treatment process. Ammonia was removed by over 99.5% in the zeolite ion exchange process as the last treatment method. From $UV_{254}$, $E_2/E_3$ ratio and GC/MS analyses of treated water at each process, the aromatic compound was converted to aliphatic and aromaticity was decreased. In pilot scale test, organics and ammonia removal efficiencies were not much different from the result of lab-scale test at various operation conditions. Furthermore, reaction time and dosage of Fenton reagent in pilot scale experiment reduced by 40 min and 50% rather than in lab-scale test. $BOD_5$, $COD_{Mn}$, SS, T-N and T-P of treated water in the pilot-scale experiment also met the effluent standards.

Study on the Application of the Fenton Oxidation Method for Remediation of Small-scale Oil-contaminated Ballasts on Railroad Track (선로 내 소규모 유류오염도상자갈 정화를 위한 펜톤산화법의 적용성 연구)

  • Kwon, Tae-Soon;Lee, Jae-Young;Kim, Hee-Man;Jung, Woo-Sung;Kim, Jong-Heun
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.466-470
    • /
    • 2015
  • In this study, Fenton oxidation was applied to railroad track ballasts contaminated with small amounts of oil. In order to perform the experiment on Fenton oxidation, petroleum contaminated ballast was collected from the railroad track and experiments on major factors of the remediation process were implemented in the laboratory. Then, the feasibility of insitu Fenton oxidation was investigated for the railroad track that was partially contaminated with oil. As a result, the residual TPH concentration of ballast was reduced to about 1,000 mg/kg-ballast in laboratory experiments using 0.1 mol Fe/L $H_2O_2$. Due to the drainage structure of the track bed, a considerable amount of $H_2O_2$ was released below the ballast without the sufficient reaction with the contaminated ballast; therefore, additional studies are necessary for the effective field application of Fenton oxidation.

펜톤산화법에 의한 PAH오염토양의 생물분해성증진에 관한 연구

  • 이병대;이창수;이진식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.26-29
    • /
    • 2002
  • We describe a modified method for effectively pretreating soil highly contaminated with ANT or BaA (both initial Conc. are 500 mg/kg soil), i.e., we apply Fenton oxidation in which ethanol is added to increase ANT and BaA removal. At least 0.5 $m\ell$ or 0.75 $m\ell$ of ethanol were added to 1 g of artificially ANT or BaA-contaminated soils (i.e., alluvial and sandy soil), respectively. This was followed by Feton oxidation in which various amounts of $H_2O$$_2$ and Fe$^{2+}$ were added. The results showed more than 98 % of ANT or BaA removal efficiency However less than 10 % of ANT and BaA removal efficiency was obtained in addition of distilled water or sodium dodecy1 sulfate. Additionally, we employ GC-MS to identify the main oxidation product generated by the optimized Fenton reaction [i.e., ANT or BaA degraded in to 69-73% 9,10-anthracenedione (ANTDI) or 43-51% 7,12-benz(a)anthracenedione (BaADI), respectively]. The biodegradability of ANTDI or BaADI are subsequently confirmed to be much more rapid than that of ANT or BaA, respectively, results suggesting that Fenton oxidation with ethanol-microbial treatment can be effectively applied to remove ANT or BaA from soil.l.

  • PDF

The Direct Decomposition of Ion-Exchange Resins by Fenton's Reagent (펜톤시약에 의한 이온교환수지의 직접산화분해)

  • Kim, Kil-Jeong;Shon, Jong-Sik;Ryu, Woo-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.221-227
    • /
    • 2007
  • Fenton's reagent is applied to directly decompose the ion-exchange resins, IRN-78 and the mixed resin with IRN-77. The newly applied procedures is to dry the resin first and the catalyst solution is completely absorbed into the resin, then a limited dose of $H_2O_2$ is introduced for an effective reaction between the reagents within the resin. As a characteristic on the decomposition of IRN-78, the resin mixture should be heated to $40^{\circ}C$ to induce the initial reaction and lag time is also needed for about 20 minutes until the main reaction occurs. The effectiveness of the decomposition is investigated using $CuSO_4,\;Cu(NO_3)_2\;and\;FeSO_4$ as a catalyst and the decomposition rate is compared depending on the concentration of each catalyst and the amount of $H_2O_2$. The most effective catalyst was found to be $FeSO_4$ for IRN-78 alone and the mixed resin with IRN-77, and $FeSO_4$ showed a special effect that the reaction was initiated without heating and a lag time. Furthermore, the optimum concentration of the catalyst for each resin and the mixed one is suggested in the view point of the amount of $H_2O_2$ needed and the stability of the decomposition reaction.

  • PDF

Photo or Solar Ferrioxalate Disinfection Technology without External Hydrogen Peroxide Supply

  • Cho, Min;Jeong, Joon-Seon;Kim, Jae-Eun;Yoon, Je-Yong
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.238-243
    • /
    • 2007
  • The Fenton reaction, which refers to the reaction between ferrous ions and hydrogen peroxide to produce the OH radical, has not been widely applied to the disinfection of microorganisms despite being economic and environmentally friendly. Cho et al. have previously proposed the neutral photo ferrioxalate system as a solution to the problems posed by the Fenton reaction in acidic conditions, but this system still requires an external hydrogen peroxide supply. In the present study, we developed a simple disinfection technology using the photo or solar ferrioxalate reaction without the need for an external hydrogen peroxide supply. E. coli was employed as the indicating microorganism. The study results demonstrated the effectiveness of the photo ferrioxalate system in inactivating E. coli without any external hydrogen peroxide supply, as long as dissolved oxygen is supplied. Furthermore, the solar ferrioxalate system achieved faster inactivation of E. coli than an artificial light source at similar irradiance.