• Title/Summary/Keyword: Fenton

Search Result 342, Processing Time 0.033 seconds

Fenton Process for Treatment of Contaminated Groundwater

  • Jung, Oh-Jin;Park, Chil-Nam
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.165-172
    • /
    • 2001
  • We investigated the optimal experimental conditions and reaction kinetics for the decompositions of PCE, TCE, naphthalene, and chloroform using conventional Fenton oxidation process. Additionally, the influence of pH on the decompositions of PCE was also evaluated. The results indicated that the optimal pH value was around 3. The dosage of Fenton's reagent and the molar ratio of hydrogen peroxide to ferrous ion for an approximately complete decomposition was found to depend on the properties of the organic compound. Due to their unsaturated structures, the results show that PCE, TCE, and naphthalene could be all effectively decomposed by Fenton's reagent oxidation. Their unsaturated structures could be mostly destoyed within first 1-2 minutes at a low dosage with an certain molar ratio of hydrogen peroxide to ferrous ion. However the saturated compound such as chloroform was more difficult to decompose even with a relatively high dosage of Fenton's reagent.

  • PDF

Astudy on Treatment of Livestock Wastewater using Coagulation and Fenton Oxidation Process (응집 및 fenton 산화공정을 연계한 축산폐수처리에 관한 연구)

  • Cho, Chang-Woo;Ryou, Jae-Woong;Chung, Paul-Gene
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.610-614
    • /
    • 2004
  • The objective of this study was to remove organics and color in livestock wastewater using coagulation and Fenton oxidation process. After coagulation process as $1^{st}$ treatment, organics in $1^{st}$ treatment water were removed by using OH radical produced in Fenton oxidation process. Removal efficiencies of $COD_{Mn}$ and color were 87.2% and 95.7% separately. At that time, the ratio of $Fe^{2+}/H_2O_2$ was 0.8~1.0, and range of reaction pH was effective at the pH of 3.5~3.8. The Reaction time of 120min more than 60min or 90min was sufficient in Fenton process. Removal efficiency of organics was higher two- or multi-stage treatment than one-stage treatment.

Theoretical Understanding of Fenton Chemistry (펜톤 화학 반응의 이론적 이해)

  • Lim, Haegyu;Namkung, Kyu Cheol;Yoon, Jeyong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • The Fenton reaction ($Fe^{2+}+H_2O_2$) has attracted considerable attention because of promising applicability as an environmental technology. While the various novel environmental technologies using Fenton reaction have been actively developed, the detailed mechanism of Fenton reaction is not clearly defined yet. As the major oxidizing chemical species, hydroxyl radical and high valent iron complex have been suggested to be produced in Fenton reaction in different mechamisms respectively. We critically summarized the basic issues regarding the microscopic mechanism of Fenton reaction.

Serial Degradation of Perchloroethylene by Delftia sp. N6 after Dechlorination Using Fenton's Reagent

  • Lee, Wan-Seok;Kim, Jang-Eok;Kim, Hee-Sik;Ahn, Chi-Yong;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1734-1739
    • /
    • 2006
  • The degradation of perchloroethylene (PCE) was investigated with the serial treatment of biological reaction after dechlorination using Fenton's reagent. The dechlorination of PCE was expressed using $D_m$ (dechlorination value), calculated from ${\Delta}Cl^-mol/{\Delta}PCE$ mol, and was 2.58 with 5 mM of $H_2O_2$ and $Fe^{3+}$. The $150{\mu}M$ of PCE was transformed to $37{\mu}M$ of dichloroacetic acid (DCAA). Biological treatment with Delftia sp. N6 was applied after degradation of PCE by the Fenton reaction. The optical densities indicating cell growth were 0.53/0.10 with/without the Fenton reaction after one day, respectively. The N6 strain degraded 95% of the DCAA produced from PCE by the Fenton reaction within one day. Consequently, it seemed that the serial treatment of a Fenton reaction and biological reaction was effective in the removal of not only PCE, but also DCAA, one of the major metabolites of PCE.

Eveluation of Comparable Removal Efficiency of Organics and Color for the Dyeing Wastewater by Fenton Oxidation and Ozonation (펜톤산화와 오존산화 조합에 따른 염색폐수의 유기물질 및 색도 처리효율 비교 평가에 관한 연구)

  • Kim, Sun Hee;Lee, Sang Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.778-784
    • /
    • 2004
  • Dyeing wastewater contains recalcitrant organics which can not be easily treated by conventional biological treatment. Therefore it has to be treated by other advanced oxidation process in order to remove COD and Color more efficiently. Fenton oxidation process is one of the most commonly applied processes in removal of COD and color for the dyeing wastewater. However it increase the treatment cost and the production of sludge by the use of the excessive chemical reagent. Ozonation is not suitable in Single treatment process because it is not effective in organics removal compared with Color removal. The purpose of this research in order to evaluate the comparable removal efficiency of COD and color by the combination of advanced oxidation processes for the dyeing wastewater. The sequential treatment processes of Fenton process and ozonation was more effective to remove organics and color than ozonation and Fenton process. The result of Fenton process for the pretreatment presented as the 81% removal of organics whereas ozonation process for the pretreatent presented as the 22.1% removal of organics. The removal of colour was higher as 81.3% for the ozonation as the pretreatment than 77.7% for the Fenton process as the pretreatment.

A Study on the Characteristics of Fenton Oxidation of Bisphenol A and Nitrobenzene (비스페놀A와 니트로벤젠의 펜톤 산화분해 특성)

  • Bae, Su-Jin;Kwon, Hee-won;Kim, Ji-young;Hwang, In-Seong;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1005-1014
    • /
    • 2021
  • Organic contaminants can be released into water environments due to chemical accidents and exist as dissolved and non-aqueous phase liquids (NAPL). Fenton oxidation was tested for bisphenol A and nitrobenzene as model organic contaminants in dissolved and NAPL states. Fenton oxidation was successfully applied for both of the dissolved and NAPL states of the two pollutants and the results indicated that a quick treatment was needed to reduce the risk from a chemical accidents instead of carrying out oxidation after the contaminants dissolve in water. A set of Fenton reactions were tested under seawater conditions because chemical accidents often occurs in the ocean. Chloride ions act as radical scavengers and inhibit Fenton oxidation. The reaction rate is inversely proportional to salt contents and the reduced reaction rate can be compensated by increasing the quantity of the oxidizing agents. The current study showes that Fenton oxidation could be applied as a quick treatments for organic contaminant in dissolved and NAPL state organic contaminants released as a result of leaks or chemical accidents.

A Comparative Study of the Degradation of the Erionyl Navy R by Different Oxidation Processes: Chemical, Fenton and Fenton-like

  • Belaid, Kumar Djamal;Elhorri, Abdelkader M.;Mered, Yassine;Hichem, Ellali
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.419-424
    • /
    • 2022
  • The oxidative degradation performance of the Erionyl Navy R dye was studied in this article. The investigation mainly focused on a comparative study between chemical oxidations by sodium hypochlorite (NaClO) and hydrogen peroxide (H2O2), and catalytic oxidations including the Fenton (Fe2+-H2O2) and Fenton-Like (Fe2+/ Fe3+/Co2+/ Mn2+-H2O2) or modified Fenton-like (Fe2+/ Fe3+ -NaClO) reactions. A discoloration and degradation of the Erionyl Navy R occurred after 30 minutes, which varies according to the oxidation system involved; 31%, 54%, <20%, 95%, and >96% losses were observed for Co2+-H2O2, Mn2+-H2O2, Fe2+-NaClO, Fe3+-NaClO), and Fe2+-H2O2 and Fe3+-H2O2, respectively.

Degradation Kinetic and Mechanism of Methyl Tert-butyl Ether (MTBE) by the Modified Photo-Fenton Reaction (Modified Photo-Fenton Reaction을 이용한 Methyl Tert-butyl Ether (MTBE)의 분해 Kinetic 및 메커니즘 규명에 관한 연구)

  • Kim, Min-Kyoung;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.69-75
    • /
    • 2006
  • Improper disposal of petroleum and spills from underground storage tanks have created large areas with highly toxic contamination of the soil and groundwater. Methyl tert-butyl ether (MTBE) is widely used as a fuel additive because of its advantageous properties of increasing the octane value and reducing carbon monoxide and hydrocarbon exhausts. However, MTBE is categorized as a possible human carcinogen. This research investigated the Modified Photo-Fenton system which is based on the Modified Fenton reaction and UV light irradiation. The Modified Fenton reaction is effective for MTBE degradation near a neutral pH, using the ferric ion complex composed of a ferric ion and environmentally friendly organic chelating agents. This research was intended to treat high concentrations of MTBE; thus, 1,000 mg/L MTBE was chosen. The objectives of this research are to find the optimal reaction conditions and to elucidate the kinetic and mechanism of MTBE degradation by the Modified Photo-Fenton reaction. Based on the results of experiments, citrate was chosen among eight chelating agents as the candidate for the Modified Photo-Fenton reaction because it has a relatively higher final pH and MTBE removal efficiency than the others, and it has a relatively low toxicity and is rapidly biodegradable. MTBE degradation was found to follow pseudo-first-order kinetics. Under the optimum conditions, [$Fe^{3+}$] : [Citrate] = 1 mM: 4 mM, 3% $H_2O_2$, 17.4 kWh/L UV dose, and initial pH 6.0, the 1000 ppm MTBE was degraded by 86.75% within 6 hours and 99.99% within 16 hours. The final pH value was 6.02. The degradation mechanism of MTBE by the Modified Photo-Fenton Reaction included two diverse pathways and tert-butyl formate (TBF) was identified to be the major degradation intermediate. Attributed to the high solubility, stability, and reactivity of the ferric-citrate complexes in the near neutral condition, this Modified Photo-Fenton reaction is a promising treatment process for high concentrations of MTBE under or near a neutral pH.

Comparative Studies Of the $UV/H_2O_2,\;UV/TiO_2/H_2O_2$ and Photo-Fenton Oxidation for Degradation of Citric Acid ($UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton 산화방법에 의한 Citric Acid의 분해효율 비교)

  • Seo, Min-Hye;Cho, Soon-Haing;Ha, Dong-Yun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.429-437
    • /
    • 2006
  • To establish the efficient treatment technology of chemical cleaning wastewater from power plant, several AOPs($UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation) were investigated. Treatment efficiencies and the electrical energy requirements based on the EE/O parameter(the electrical energy, required per order of pollutant removal in $1m^3$ wastewater) were evaluated. TOC removal efficiencies of $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation at the optimum conditions were 95.5%, 92.3%, 91.5%, respectively. The electrical energy requirements of $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation were $11.26kWh/m^3,\;3.85kWh/m^3,\;0.799kWh/m^3$, respectively. From these results, it could be concluded that all of the three oxidation processes were effective for the degradation of citric acid. Considering the treatment efficiency and economical aspect, photo-Fenton oxidation was the most efficient treatment process among the three processes tested.

Comparison of Membrane Degradation of PEMFC by Fenton Reaction and OCV Holding (Fenton 반응과 OCV Holding에 의한 PEMFC 고분자 전해질 막의 열화비교)

  • Oh, Sohyung;Kwag, Ahhyun;Lee, Daewoong;Lee, Mooseok;Lee, Donghoon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.768-773
    • /
    • 2019
  • The Fenton reaction, which evaluates the electrochemical durability of polymer membranes of polymer electrolyte fuel cells (PEMFC), and the degradation of polymer membranes by OCV holding method are compared. The Fenton reaction is a method that can evaluate the chemical durability of the polymer membrane at outside the cell in a shorter time than the OCV Holding method. The Fenton reaction was carried out at 30% hydrogen peroxide, 10 ppm iron, and $80^{\circ}C$ for 24 hours. OCV Holding was driven at $90^{\circ}C$, 30% relative humidity and OCV for 168 hours. The Fenton reaction caused a lot of degradation inside the polymer membrane. On the other hand, in OCV Holding, the membrane thickness was thinned by the entire surface and internal degradation. The fluorine emission rate was more than 10 times higher than that of OCV Holding due to the Fenton reaction. The hydrogen permeation rate increased about 30% at 24 hours of Fenton reaction. At OCV Holding, hydrogen permeability decreased after 24 hours and then increased. As a whole, there was a difference in a membranes deteriorated by Fenton reaction and OCV Holding.