• Title/Summary/Keyword: Fenton's process

Search Result 35, Processing Time 0.023 seconds

Comparison of the Sonodegradation of Naphthalene and Phenol by the Change of Frequencies and Addition of Oxidants or Catalysts (주파수 변화 및 보조제 첨가에 따른 나프탈렌 및 페놀의 초음파 분해효율 비교)

  • Park, Jong-Sung;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.706-713
    • /
    • 2010
  • The research seeks to find the optimal conditions for sonodegradation of naphthalene and phenol as exemplary organic pollutants to be subjected to ultrasound in varying frequencies (28 kHz, 580 kHz, and 1,000 kHz) and in the presence of different kinds of additive (T$TiO_2$, $H_2O_2$, $FeSO_4$, Zeolite, and Cu). In cases of both naphthalene and phenol, 580 kHz of ultrasound has proven to be the most effective among others at sonodegradation. Based on the observation that OH radicals are also produced in maximum under exposure of 580 kHz of ultrasound, we concluded that this frequency of ultrasound creates hospitable condition for the combined process of degradation by pyrolysis and oxidization. $FeSO_4's$ degradation rate and k1 value have increased by approximately 1.8 times compared with the results of the solutions without any additives. This seems to be the result of ultrasound reaction which, accompanied by Fenton's reaction, increased the oxidative degradation and the production of OH radicals. However, application of ultrasound and Fenton's reaction is limited to the batch type conditions, as its use in continuous system can cause loss of iron or decay of the cistern, thereby creating additional pollutants. When the additive is replaced with $TiO_2$, on the contrary, the rate of sonodegradation has increased up to 20% compared to when there was no additive. We therefore conclude that $TiO_2$ could prove to be an effective additive for ultrasound degradation in continuous treatment system.

Advances in Materials for Proton Exchange Membrane based Fuel Cells

  • McGrath James E.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.58-59
    • /
    • 2006
  • Less than a decade ago, most alternate membrane materials for fuel cells relied upon a post-sulfonation process to generate ionic groups capable of transporting protons from the anode to the cathode. These random post sulfonations showed some promise, but in general they produced materials that were not sufficiently stable or protonically conductive at ion exchange capacities where aqueous swelling could be restricted. Our group began to synthesize disulfonated monomers that could be used to incorporate into random copolymer proton exchange membranes. The expected limitation was that the aromatic polymers might not be stable enough to withstand fuel cell conditions. However, this was mostly based upon an accelerated test known was the Fenton's Reagent Test, which did not seem to this author as being a reliable predictor of performance. A much better approach has been to evaluate the open circuit voltage (OCV) for alternate membranes, as well as the benchmark perfluorosulfonic acid systems. When this is done, the aromatic ionomers of this study, primarily based upon disulfonated polyarylene ether sulfones, show up quite well. Real time 3000 hours DMFC results have also been generated. Obtaining conductive materials at low humidities is another major issue where alternate membranes have not been particularly successful. In order to address this problem, multiblock copolymers with relatively high water diffusion coefficients have been designed, which show promise for conductivity at lowered humidity.

  • PDF

Hydroxyl Radical-Mediated Commitment of HL-60 Cells to Differentiation: Modulation of Differentiation Process by Phosphodiesterase Inhibitors

  • Cho, Young-Jin;Ahn, Woong-Shick;Cha, Seok-Ho;Lee, Kweon-Haeng;Kim, Won-Il;Chung, Myung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.369-376
    • /
    • 1998
  • This report shows that hydroxyl radical, generated by a Fenton reaction involving adenosine $5'-diphosphate/Fe^{2+}$ complex ($5-15\;{\mu}M$) and $H_2O_2$ ($2\;{\mu}M$), induced differentiation of HL-60 cells in a dose- and time-dependent manner. This is evidenced by the increases in 12-O-tetradecanoylphorbol 13-acetate- and fMLP-stimulated superoxide production capability. The cells exposed to hydroxyl radical for defined periods (24∼96 hr) continued to differentiate even after the hydroxyl radical generating system had been removed. The differentiated cells displayed fMLP-stimulated calcium mobilization and increased expression of myeloid-specific antigen CD11b and CD14. The extent of the differentiation was markedly reduced by desferrioxamine ($100\;{\mu}M$), dimethylthiourea (5 mM), N,N'-diphenyl-1,4-phenylenediamine ($2\;{\mu}M$), and N-acetyl-L-cysteine (5 mM). The induction of differentiation by hydroxyl radical was enhanced by 3-isobutyl-1-methylxanthine ($200\;{\mu}M$) and Ro-20-1724 ($8\;{\mu}M$), and inhibited by dipyridamole (2 ${\mu}M$). These results suggest that hydroxyl radicals may induce commitment of HL-60 cells to differentiate into more mature cells of myelomonocytic lineage through specific signal-transduction pathway that is modulated by phosphodiesterase inhibitors.

  • PDF

Tailored Sun Safety Messages for Outdoor Workers

  • Sajjad S. Fazel;Shelby Fenton;Nicole Braun;Lindsay Forsman-Phillips;D. Linn Holness;Sunil Kalia;Victoria H. Arrandale;Thomas Tenkate;Cheryl E. Peters
    • Safety and Health at Work
    • /
    • v.14 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • Background: Messaging surrounding skin cancer prevention has previously focused on the general public and emphasized how or when activities should be undertaken to reduce solar ultraviolet radiation (UVR) exposure. Generic messages may not be applicable to all settings, and should be tailored to protect unique and/or highly susceptible subpopulations, such as outdoor workers. The primary objective of this study was to develop a set of tailored, practical, harm-reducing sun safety messages that will better support outdoor workers and their employers in reducing the risk of solar UVR exposure and UVR-related occupational illnesses. Methods: We adapted a core set of sun safety messages previously developed for the general population to be more applicable and actionable by outdoor workers and their employers. This study used an integrated knowledge translation approach and a modified Delphi method (which uses a survey-based consensus process) to tailor the established set of sun safety messages for use for outdoor worker populations. Results: The tailored messages were created with a consideration for what is feasible for outdoor workers, and provide users with key facts, recommendations, and tips related to preventing skin cancer, eye damage, and heat stress, specifically when working outdoors. Conclusion: The resulting tailored messages are a set of evidence-based, expert- approved, and stakeholder-workshopped messages that can be used in a variety of work settings as part of an exposure control plan for employers with outdoor workers.

Removal of Algogenic Organic Matter in Drinking Water Treatment Process (정수처리공정에서 조류유래 유기물질의 제거)

  • Park, Se-Jin;Cha, Il-Kwon;Yoon, Tai-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.377-384
    • /
    • 2005
  • Algae causes not only the eutrophication of lake, but also the deterioration of drinking water process. Especially, algogenic organic matters(AOM) are assumed as disinfection by-products(DBPs) precursors like humic and fulvic acids. In this study, it was investigated the characteristics changes of algogenic organic matter(AOM) by prechlorination and coagulation treatment. Evaluation of enhanced coagulation and applicability of UV oxidation process were also evaluated as the drinking water treatment system for the eutrophicated water source. prechlorination was effective process for algae removal but caused releasing of dissolved organic matter(DOC) into water due to the destruction of algae's cell. In coagulation treatment with Fe(III) coagulant, reaction pH is an important factor for the removal of AOM and triholomathanes(THMs). At pH 5, removal efficiency of DOC and THMs were dramatically improved by 50% and 28%, respectively, in comparison with the conventional coagulation treatment at about pH 7. Photo-Fenton($UV/H_2O_2/Fe^{3+}$) process among the UV oxidations is the most effective system to remove AOM, but its removal efficiency was lower than that of enhanced coagulation treatment at pH 5.