• Title/Summary/Keyword: Female-specific markers

Search Result 32, Processing Time 0.02 seconds

Identification of Sex-specific Expression Markers in the Giant Tiger Shrimp (Penaeus monodon)

  • Khamnamtong, Bavornlak;Thumrungtanakit, Supaporn;Klinbunga, Sirawut;Aoki, Takashi;Hirono, Ikuo;Menasveta, Piamsak
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • Bulked segregant analysis (BSA) and AFLP were used for isolation of genomic sex determination markers in Penaeus monodon. A total of 256 primer combinations were tested against 6-10 bulked genomic DNA of P. monodon. Five and one candidate female- and male-specific AFLP fragments were identified. Female-specific fragments were cloned and further characterized. SCAR markers derived from FE10M9520, FE10M10725.1, FE10M10725.2 and FE14M16340 provided the positive amplification product in both male and female P. monodon. Further analysis of these markers using SSCP and genome walk analysis indicated that they were not sex-linked. In addition, sex-specific (or differential) expression markers in ovaries and testes of P. monodon were analyzed by RAP-PCR (150 primer combinations). Twenty-one and fourteen RAP-PCR fragments specifically/differentially expressed in ovaries and testes of P. monodon were successfully cloned and sequenced. Expression patterns of 25 transcripts were tested against the first stranded cDNA of ovaries and testes of 3-month-old and broodstock-sized P. monodon (N = 5 and N = 7 - 10 for females and N = 4 and N = 5 - 7 for males, respectively). Five (FI-4, FI-44, FIII-4, FIII-39 and FIII-58) and two (M457-A01 and MII-51) derived RAP-PCR markers revealed female- and male-specific expression patterns in P. monodon. Surprisingly, MII-5 originally found in testes showed a higher expression level in ovaries than did testes of juvenile shrimps but a temporal female-specific pattern in P. monodon adults.

Screening and Cloning of RAPD Markers from the W Chromosome of Silkworm, Bombyx mori L.

  • Chen, Keping;Zhang, Chunxia;Yao, Qin;Xu, Qinggang;Tang, Xudong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.2
    • /
    • pp.161-167
    • /
    • 2004
  • Silkworms sex determination drew high attention from researchers. Sex chromosomes on the silkworm are of ZW type for females and ZZ type for males. Chromosome W plays an important role in sex determination. Although several molecular linkage maps have been constructed for silkworm, very few markers are discovered on the W chromosome. In order to look for molecular markers and to further locate the Fern gene on chromosome W, we used genomic DNA from both female and male larvae of a silkworm strain named 937 as PCR templates for RAPD amplification with 200 arbitrary 10-mer primers. The amplification results showed three female-specific bands, namely ${OPG-07_496}, {OPC-15_1,660} and {OPE-18_1,279}$. Further verification, however, revealed no band from OPG-07 and OPC-15 in either sex in the strain 798, but OPE-18 provided female-specific band in the strains Suluan7 and C108, and absent in both males and strain 798. This indicates that the bands from ${OPG-07_496} and {OPC-15_1,660}$ are probably female-specific in strain 937, and the band from OPE-18 was probably amplified from a common segment shared by most strains. The genomic DNAs from OPG-07 and OPC-15 were cloned and sequenced. Sequence analysis showed that the DNAs from OPG-07 and OPC-15 have high identities with the retrotransposable elements, and DNA from OPC-15 contains a portion of sequence which probably encodes an eukaryotic translation initiation factor 4E binding protein (eIF4EBP).

Development of a sequence-characterized amplified region (SCAR) marker for female off-season flowering detection in date palm (Phoenix dactylifera L.)

  • Lalita Kethirun;Puangpaka Umpunjun;Ngarmnij Chuenboonngarm;Unchera Viboonjun
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.190-199
    • /
    • 2023
  • Date palm (Phoenix dactylifera L.: Arecaceae) is a dioecious species where only female trees bear fruits. In their natural state, date palms produce dates once a year. However, in Thailand, some trees were observed to produce dates during the off-season, despite no variations in morphology. The availability of such off-season fruits can significantly increase their market value. Interestingly, most female off-season date palms investigated in this study were obtained through micropropagation. Hence, there is an urgent need for genetic markers to distinguish female offseason flowering plantlets within tissue culture systems. In this study, we aimed to develop random amplification of polymorphic DNA-sequence characterized amplified region (RAPD-SCAR) markers for the identification of female off-season flowering date palms cultivated in Thailand. A total of 160 random decamer primers were employed to screen for specific RAPD markers in off-season flowering male and female populations. Out of these, only one primer, OPN-02, generated distinct genomic DNA patterns in female off-season flowering (FOFdp) individuals compared to female seasonal flowering genotypes. Based on the RAPD-specific sequence, specific SCAR primers denoted as FOFdpF and FOFdpR were developed. These SCAR primers amplified a single 517-bp DNA fragment, predominantly found in off-season flowering populations, with an accuracy rate of 60%. These findings underscore the potential of SCAR marker technology for tracking offseason flowering in date palms. Notably, a BLAST analysis revealed a substantial similarity between the SCAR marker sequence and the transcript variant mRNA from Phoenix dactylifera encoding the SET DOMAIN GROUP 40 protein. In Arabidopsis, this protein is involved in the epigenetic regulation of flowering time. The genetic potential of the off-season flowering traits warrants further elucidation.

Identification of Genetic Markers for Korean Native Cattle (Hanwoo) by RAPD Analysis

  • Yeo Jung Sou;Lee Ji Sun;Lee Chang Hee;Jung Young Ja;Nam Doo Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.23-26
    • /
    • 2000
  • In order to develop the specific genetic marker for Korean native cattle (Hanwoo), randomly amplified polymorphic DNA (RAPD) analysis of 6 different cattle breeds was attempted by using 38 decamer primers. In comparison of RAPD patterns, two distinctive DNA bands specific for Hanwoo were detected. One was 296 bp of DNA fragment found to be specific only for female Hanwoo when primer GTCCACACGG was employed. In individual analysis of this RAPD marker was observed only in female individuals with the possibility of $85.3\%$. The other was 521 bp of RAPD marker amplified using TCGGCGATAG and AGCCAGCGAA primers, which showed $83.0\%$ of genetic frequency in 85 male and 68 female individuals tested. Nucleotide sequencing of these genetic markers revealed that 296 bp marker has a short micro satellite-like sequence, ACCACCACAC, and a tandem repeat sequence of microsatellite GAAAAATG in the determined sequence. Two distinctive tandem repeats of microsatellite sequences, MC and GAAGA, were also appeared in 521 bp DNA marker. In BLAST search, any gene having high homology with these markers was not found.

  • PDF

Identification of RAPD markers linked to sex determination in guggal [Commiphora wightii (Arnott.)] Bhandari

  • Samantaray, Sanghamitra;Geetha, K.A.;Hidayath, K.P.;Maiti, Satyabrata
    • Plant Biotechnology Reports
    • /
    • v.4 no.1
    • /
    • pp.95-99
    • /
    • 2010
  • Decamer RAPD primers were tested on dioeceious and hermaphrodite plants of Commiphora wightii to identify sex-specific molecular markers. Sixty different random decamer primers were screened out of which only three primers were found to be associated with sex expression. A ~1,280-bp fragment from the primer OPN06 was found to be present in all the female individuals. Another primer OPN 16 produced a unique ~400-bp amplification product in only hermaphrodite individuals. The third marker, OPA20 amplified a ~1,140-bp fragment from female and hermaphrodite DNAs, but failed to do so from the male plant DNAs.

Identification of Monoecious and Dioecious Plants of. Schisandra nigra Using the RAPD Markers (RAPD 표지인자를 이용한 흑오미자의 자웅동주 및 자웅이주 식물의 동정)

  • 이효연;한효심;이갑연;한상섭;정재성
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.309-313
    • /
    • 1998
  • RAPD (Random Amplified Polymorphic DNA) analysis was conducted to Schisandra nigra plants in order to select the specific markers for monoecious and dioecious individuals. RAPD results using eighty random 10-mer primers revealed that S. nigra had a different banding pattern from S. chinensis and Kadsura japonica. When DNA isolated from leaves of monoecious and dioecious plants were used as PCR template, only five primers, OPA-17, OPA-19, OPB-03, OPB-09 and OFB-16, showed polymorphic band patterns. No variation in banding profiles within male or female individuals was observed when these five primers were used whereas three monoecious plants (No 1, No 2 and No 3) showed different banding patterns one another, A 750 bp segment was amplified by primer OPB-3 from male individuals. On the other hand, two segments, 950 bp and 1690 bp, with OPA-19 and 700 bp of segment with OPB-3 were amplified in female individuals. These result indicate that the specific buds of male and female S. nigra could be used as genetic markers for the early discrimination of male and female individuals.

  • PDF

Variation of RAPD patterns between Male and Female Genomic DNAs in Dioecious Rumex acetosa L. (자웅이주 식물 수영 (Rumex acetosa L.)에서 암.수에 따른 RAPD pattern의 다양성 분석)

  • 김동순;구달회;허윤강;방재욱
    • Korean Journal of Plant Resources
    • /
    • v.16 no.1
    • /
    • pp.55-60
    • /
    • 2003
  • The genetic variation of random amplified polymorphic DNA (RAPD) patterns of genomic DNAs was investigated in dioecious plant Rumex acetosa L., which carries different sex chromosome complements in female (2n=12A+XX) and male (2n=12A+XY$_1$Y$_2$). One hundred and twenty random primers consisted of 10-mer were used for PCR amplification. Polymorphic bands were found in 24 primers. Specific bands for female and male were 16 and 18, respectively. Especially, a band of 1,440 bp from the OPC-10 primer was male specific. These sex specific RAPD markers are used to understanding the sex determination mechanism in plants.

Seed Purity Test and Genetic Diversity Evaluation Using RAPD Markers in Radish (Raphanus sativus L.)

  • Huh, Man-Kyu;Choi, Joo-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.346-350
    • /
    • 2009
  • The cultivated radish (Raphanus sativus L.) is a major vegetable crop in the world wide and fast-growing species that grows inhabitats of six continents. It is very important to determine hybrid seed purity in the production of hybrid Brassica vegetable seeds to avoid unacceptable contamination with self-inbred (sib) seeds. The use of random amplified polymorphic DNA (RAPD) markers for evaluating seed purity in $F_2$-hybrid radish cultivars demonstrated. One hundred eighty seeds from the F1 male and female harvest were subsequently screened for seed purity using 13 primers. The 13 primers result in 17 cultivar-specific bands and 23 variable RAPD bands scored for cultivar. RAPD analysis of hybrid seeds from the harvest revealed 128 seeds tested except underdevelopment and decayed seeds were sibs. Especially, $F_2$ hybrids of radish, OPC13, OPD20 were presented clear hybrid bands. It maintains higher than average level of genetic diversity compared with their correspondent parents. RAPD amplification of DNA extracted from germinated individuals from the female harvest reveal that 10 of 208 seeds tested were self-inbred (4.8%). RAPD analysis of hybrid seeds from the male harvest revealed 7 of the 208 seeds tested were sibs (3.4%). The RAPD may lead to a better insight in to the hybrid seed purity.

Seed Purity Test and Evaluation in Isatis tinctoria var. yezoensis (Ohwi) Ohwi Using AFLP Markers (대청에서 AFLP를 이용한 종자순도검사와 평가)

  • Choi, Joo-Soo;Huh, Man-Kyu;Sung, Jung-Sook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.198-203
    • /
    • 2009
  • Isatis tinctoria var. yezoensis (Ohwi) Ohwi (Cruciferae) is one of major natural dyeing crops in the world and also have used as a medicinal plant in Korea. We evaluated seed purity in $F_1$-hybrid accessions using amplified fragment length polymorphism (AFLP) markers. One hundred sixty seeds from the male and female harvests were subsequently screened for seed purity with ten primers. The 13 accession-specific bands and many variable AFLP bands scored for accessions. Especially, E-AAC/M-CAA and E-AAG/M-CAT were presented clear hybrid bands for $F_1$ hybrids. $F_1$ hybrids maintained higher average level of genetic diversity compared with their correspondent parents. Self-inbred seeds from the female and male harvests were revealed 8.0% and 5.0%, respectively. The AFLP may lead to a better insight in to the hybrid seed purity test in I. tinctoria var. yezoensis.

Recent Candidate Molecular Markers: Vitamin D Signaling and Apoptosis Specific Regulator of p53 (ASPP) in Breast Cancer

  • Patel, Jayendra B.;Patel, Kinjal D.;Patel, Shruti R.;Shah, Franky D.;Shukla, Shilin N.;Patel, Prabhudas S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1727-1735
    • /
    • 2012
  • Regardless of advances in treatment modalities with the invention of newer therapies, breast cancer remains a major health problem with respect to its diagnosis, treatment and management. This female malignancy with its tremendous heterogeneous nature is linked to high incidence and mortality rates, especially in developing region of the world. It is the malignancy composed of distinct biological subtypes with diverse clinical, pathological, molecular and genetic features as well as different therapeutic responsiveness and outcomes. This inconsistency can be partially overcome by finding novel molecular markers with biological significance. In recent years, newer technologies help us to indentify distinct biomarkers and increase our understanding of the molecular basis of breast cancer. However, certain issues need to be resolved that limit the application of gene expression profiling to current clinical practice. Despite the complex nature of gene expression patterns of cDNAs in microarrays, there are some innovative regulatory molecules and functional pathways that allow us to predict breast cancer behavior in the clinic and provide new targets for breast cancer treatment. This review describes the landscape of different molecular markers with particular spotlight on vitamin D signaling pathway and apoptotic specific protein of p53 (ASPP) family members in breast cancer.