• Title/Summary/Keyword: Female Sex Hormone

Search Result 99, Processing Time 0.027 seconds

Detection of Tissue-specific Expression of Porcine Cytochrome P450 Aromatase Genes by Use of Denaturing High Performance Liquid Chromatography(DHPLC) Technique (DHPLC 기술을 이용한 돼지 Cytochrome P450 Aromatase 유전자의 조직 - 특이적 발현양상 관찰)

  • Chae, S.H.;Ghlmeray, A.K.;Hong, J.M.;Lee, E.J.;Chang, J.S.;Choi, I
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.315-324
    • /
    • 2004
  • Cytochrome P450 aromatase is the enzyme responsible for biosynthesis of female sex hormone(estrogen) and 19-nortestosterone(nandrolone), a unique steroid hormone endogenously synthesized in the pig. By use of RT-PCR coupled with DHPLC technique (WAVE analysis), expression pattern of isoforms of porcine cytochrome P450 aromatase gene was investigated. Relatively higher expression of aromatase mRNA was observed in testis than in ovary and this result accounted for the previous findings of higher blood estrogen level in male compared with female in this species. The result from the DHPLC demonstrated that PCR amplified DNA fragments of ovary and testis tissues. using unique PCR primers for all three types of aromatase genes, were different from those of type II and ill genes. Further nucleotide sequence analyses of the plasmid clones containing the PCR products revealed that nucleotide sequences of all clones were identical to type I aromatase gene(ovary type). Thus, the result from the present study indicates that the ovary and testis express the same type of aromatase gene. Therefore, the efficacy of DHPLC techniques used for this study helped us to analyze tissue-specific expression of isoform of genes containing the nucleotide sequences with high homology.

Understanding of Intrauterine Environment Changes based on Proteomics and Bioinformatics during Estrous Cycle (단백체학과 생물정보학을 이용한 자궁 내 환경의 이해)

  • Lee, Sang-Hee;Lee, Seunghyung
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.621-630
    • /
    • 2019
  • Fertilization is the beginning of a new life that occurs in the female uterine. The female reproductive tract is composed ovary, oviduct, uterine, vagina and cervix, their physiological features are regulated by estrous cycle. Of these, uterine is a main point to establish embryo development and implantation, and intercommunication between embryo and uterine environment is necessary for suitable pregnancy. Endometrium is part of the uterine, its morphology is repetitively changed by hormones, and characteristic of uterine fluid from endometrium is also changed. Recently, massive proteins of endometrium and uterine fluid can be detected according to develop proteomics and bioinformatics and have been accelerated the understanding of the reproductive biology fields. Moreover, the massive protein information is actively studying with deeply studied theory such as sex hormone signal pathway and angiogenesis in mammals. In this paper, we review understanding of endometrium remodeling, uterine gland and fluid during estrous cycle, additionally studies on endometrium and uterine fluid based on proteomics techniques. Lastly, we introduced methods of the protein-protein correlation using bioinformatics tool that interaction with hormone receptors, representative angiogenetic factors and detected proteins using proteomics in endometrium and uterine fluid. This review will be useful to understanding the study on search of new cell mechanism in endometrium and uterine fluid.

Sex-Hormone Replacement Effect of Silkworm Pupa and Mixture with Herbs (미성숙 흰쥐에서 누에 번데기 및 한약재 혼합물의 여성호르몬 대체효과)

  • Yang Ji-Won;Choi Eun-Mi;Kwon Mu-Gil;Koo Sung-Ja
    • Korean journal of food and cookery science
    • /
    • v.21 no.6 s.90
    • /
    • pp.769-775
    • /
    • 2005
  • In this study we isolate substances to serve as dietary resources in order to replace the female hormone. Silkworm (Bombyx mori) is one of the most attractive hosts for large-scale production of eukaryotic proteins which have been proven safe as a dietary resource. We report on the estrogenicity of a mixture of silkworm pupa and herbs (Ginseng,Ulkeum, and Hasuo) using the immature rat uterotrophic assay in vivo. Silkworm pupa aqueousextract (KW) and silkworm oil extract (KO) induced effects on the immature rat uterotrophic assay. KO showed neither positive uterotrophic response nor inhibition on E2 induced effect, while KW and MK (mixture of KW and herbs) showed both of the effects. It is concluded that ethanol extracts from silkworm might be a good, therapeutic, natural product for hormone-deficient diseases.

Annual Reproductive Cycle and Changes in Plasma Levels of Sex Steroid Hormones of the Female Korean Dark Sleeper, Odontobutis platycephala (Iwata et Jeon) (동사리, Odontobutis platycephala (Iwata et Jeon) 암컷의 생식주기와 혈중 성스테로이드 호르몬의 변화)

  • LEE Won-Kyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.599-607
    • /
    • 1998
  • To clarify annual reproductive cycle of Korean dark sleeper, Odontobutis platycephala (Iwata et Jeon), we examined the seasonal changes of gonadosomatic index (GSI), the proportional frequency of oocyte development stages in the ovary and the changes of sex steroid hormone levels in blood from December 1995 to November 1997. In July and August, GSI was 0.35 to 0.72 and most oocytes in the ovary were chromatin-nucleolus stage and perinucleolar stage (proportional frequency: $87\%\~96\%$). In September, GSI was 1.20 $\pm$ 0.12, some oocytes in the ovary were yolk vesifle stage (proportional frequency: $22.8\%$) and vitellogenic stage which appeared very rarely(proportional frequency: $2.2\%$). GSI increased gradually from October and reached 4.59± 0.61 to December. During this period, oocytes of vitellogenic stage increased slightly (proportional frequency in December: $22.1\%$). In January, GSI was 4.32 $\pm$ 0.72 but the proportional frequency of oocytes in vitellogenic stage increased (proportional frequency: $51.2\%$). from February, GSI was increased sharply and reached to 10.51 $\pm$ 1.04 in March, the highest value throughout the year and the proportional frequency of oocytes in vitellogenic stage also reached the highest levels (proportional frequency: $60\%$). From April, GSI was gradually decreased and fell down to 1.11 $\pm$ 0.35 in June. During this period, the proportional frequency of mature oocytes was the highest in April (proportional frequency of mature oocyte stage: $40\%$ in April, $12\%$ May, $5\%$ June) throughout the year, and atretic ovarian follicles were appeared. The blood level of estradiol-17$\beta$ ($E_2$), which stimulates the hepatic synthesis and secretion of vitellogenin, was $0.84{\pm}0.20\;ng/m{\ell}$ in August, and thereafter was not changed until December. from January, it increased sharply and reached the highest level of $ 2.85{\pm}0.35\;ng/m{\ell}$ in March throughout the year, but fell to $0.14{\pm}0.02\;ng/m{\ell}$ in July(P<0.05), 17$\alpha$-hydroxprogesterone(17$\alpha$-OHP) was the peak $13.37{\pm}0.52ng/m{\ell}$ in March, but no significant changes in other period(below $3ng/m{\ell}$, P<0.05). 17$\alpha$, 20$\beta$-dihydroxy-4-pregnen-3-one(17$\alpha$, 20$\beta$-P), which was known as the final maturation inducing hormone in teleost, was $0.74{\pm}0.09ng/m{\ell}$ in April and $0.54{\pm}0.07ng/m{\ell}$ in May, but no significant changes in other period (below $0.26\;ng/m{\ell}$, p<0.05). Taken together these results, the annual reproductive cycle of O. platycephala divided into 4 periods as follows: 1) ripe and spawning period from April to June, main spawning period was from April to May, 2) Resting period from July to August, 3) Growing period from September to December, 4) Maturing period from January to March. Moreover, It was showed that the changes of sex steroid hormone in blood played a important roles in the annual reproductive cycle of O. platycephala.

  • PDF

Effect of High-Fat Diet Feeding on the Reproductive System in Male Rats

  • Jeon, Eun-Young;Kwak, Byung-Kook;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.265-272
    • /
    • 2011
  • It is well known that adipose tissue or body fat has been proved as a crucial component of brain-peripheral axis which can modulate the activities of reproductive hormonal axis in female mammals including rodents and human. Concerning the male reproduction, however, the role of adipose tissue has not been thoroughly studied. The present study was carried out to elucidate the effect of a high-fat (HF) diet on the reproductive system of postpubertal male rats. The HF diet (45% energy from fat, HF group) was applied to male rats from week 8 after birth for 4 weeks. The blood glucose levels, body and tissue weights were measured. Histological studies were performed to assess the structural alterations in the reproductive tissues. To determine the transcriptional changes of reproductive hormone-related genes in hypothalamus and pituitary, total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Body weights (p<0.01) and blood glucose levels (p<0.01) of HF group were significantly higher than those of control animals. Similarly, the weights of epididymis (p<0.05), prostate (p<0.01), seminal vesicle (p<0.01) in HF group were higher than control levels. The weights of testis were not changed. The weights of kidney (p<0.001) and spleen (p<0.01) were significantly higher than control levels while the adrenal and pancreas weights were not changed. There were only slight alterations in the microstructures of accessory sex organs; the shape of luminal epithelial cells in epididymis from HF group were relatively thicker and bigger than those from control animals. In the semi-quantitative RT-PCR studies, the mRNA levels of hypothalamic GnRH (p<0.05) in HF group were significantly higher than those from the control animals. The mRNA levels of kisspeptin in HF group tend to be higher than control levels, the difference was not significant. Unlike the hypothalamic GnRH expression, the mRNA levels of pituitary $LH{\beta}$ and $FSH{\beta}$ were significantly decreased in HF group (p<0.05). The present study indicated that the 4-weeks feeding HF diet during the postpubertal period can alter the hypothalamus-pituitary (H-P) neuroendocrine reproductive system These results suggest that the increased body fat and the altered leptin input might disturb the H-P reproductive hormonal activities in male rats, and the changed activities seem to be responsible for the changes of tissue weights in accessory sex organs.

Identification of Genes Differentially Expressed in the MCF-7 Cells Treated with Mitogenic Estrogens

  • Cheon, Myeong-Sook;Yoon, Tae-Sook;Lee, Do-Yeon;Choi, Go-Ya;Lee, A-Yeong;Choo, Byung-Kil;Kim, Ho-Kyoung
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Estrogens, a group of steroid compounds functioning as the primary female sex hormone, play an important role in the development and progression of breast cancer. In this study, using a novel annealing control primer-based GeneFishing PCR technology, five differentially expressed genes (DEGs), expressed using 10nM mitogenic estrogens, $17{\beta}$-estradiol (E2) and $16{\alpha}$-hydroxyestrone ($16{\alpha}$-OHE1), were selected from the estrogen receptor (ER)-positive MCF-7 human breast cancer cells. The DEGs, MRPL42, TUBA1B, SSBP1, KNCT2, and RUVBL1, were identified by comparison with the known genes via direct sequencing and sequence homology search in BLAST. Quantitative real-time PCR data showed that two DEGs, tubulin ${\alpha}1b$ and kinetochore associated 2, were greater than 2-fold upregulated by E2 or $16{\alpha}$-OHE1. Both genes could be new biomarkers for the treatment and prognosis of cancers, and further study may provide insights into the molecular mechanisms underlying development and progression of breast cancer.

Immersion in sea cucumber's steroid extract to increase male production of juvenile freshwater crayfish

  • Gregorius Nugroho Susanto;Endang Linirin Widiastuti;Tri Rustanti;Sutopo Hadi
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.1
    • /
    • pp.48-57
    • /
    • 2023
  • One of the ways to increase the production for aquaculture is through the cultivation of monosexuals by ensuring genital reversal from which energy for reproduction is diverted towards growth. Masculinization has been identified as one of the most prominent techniques, where sex development was directed from female to male. This approach only altered the phenotype and not the genotype. The red claw crayfish (Cherax quadricarinatus) was a relatively new commercial commodity, and the males were known to grow faster than females. Hence, it was proposed to use monocultures comprising an all-male population to increase yield using steroid hormone, synthetic 17α-methyltestosterone. However, this technique generated residues that detrimentally affect human health, the environment, and cultivated organisms. Therefore, finding new safe natural steroid sources was essential, and one of which is exploring of natural hormones extracted from the viscera of sea cucumbers (Holothuria scabra Jaeger). This study focused on the determination of male formation and testosterone levels among juvenile crayfish, after immersing in sea cucumber steroid extract (SCSE). A completely random design with factorial was used with two variables, encompassing the varied doses (0, 2, 4 mg/L, 2 mg/L 17α-methyl testosterone as control group) and immersion times of 18 and 30 h. The result showed the dose-dependent ability of SCSE increase the male genital formation and promote the testosterone level of juvenile crayfish. In addition, the testosterone was influenced by dose and immersion duration time, with the highest level of testosterone observed in treatments of 4 mg/L SCSE with 30 h immersion was 0.248 ng/mL, while the male percentage was 77%. In conclusion, the combination of dose and immersion time significantly affected growth and testosterone levels.

Annual Reproductive cycle of the File Fish, Thamnaconus modestus, on the Southern Coast of Cheju Island (제주 남부 연안 말쥐치, Thamnaconus modestus의 생식년주기)

  • Lee, Seung-Jong;Go, You-Bong;Lee, Young-Don;Jung, Ji-Hyun;Han, Chang-Hee
    • Korean Journal of Ichthyology
    • /
    • v.12 no.1
    • /
    • pp.71-84
    • /
    • 2000
  • Annual reproductive cycle of the file fish, Thamnaconus modestus (Gunther), was histologically investigated. Samples were collected monthly in the coastal waters of Chungmun, south of Cheju Island, Korea from July 1997 to June 1999. In males and females of T. modestus GSI values reached the maximum in June and May, respectively. Reproductive cycle could be divided into the following successive stages: in females, growing stage (March to April), mature stage (April to May), spawning stage (May to June), degenerative and resting stage (July to February), and in males, growing stage (January to March), mature stage (April to May), spent stage (May to June), degenerative and resting stage (July to December), respectively. To clarify the spawning cycle of female in T. modestus, some were examined, that is, the weekly changes of GSI, detail developmental stages in the ovary and the weekly changes of sex steroid hormones ($E_2$ and T) levels in plasma during the spawning period. Throughout histological observation of the ovary during the spawning period, T. modestus belonged to an asynchronous and multiple spawner. Changes of plasma $E_2$ and T levels were similar to the changes of GSI and ovary maturity.

  • PDF

Effect of Growth Hormone and Androgen on Vitellogenin and Estrogen Receptor Gene Expression in the Japanese eel, Anguilla japonica (뱀장어 Vitellogenin과 Estrogen 수용체 유전자 발현에 대한 성장호르몬 및 웅성호르몬의 영향)

  • Kwon, Hyuk-Chu;Choi, Seong-Hee;Kim, Eun-Hee;Kwon, Joon-Yeong
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.97-103
    • /
    • 2006
  • Vitellogenin(Vg) is a sex specific serum protein present in sexually maturing female blood of oviparous vertebrates. Estrogen($E_2$) is a main inducer of hepatic Vg synthesis. We investigated the effects of androgen and growth hormone(GH) on regulation of Vg and estrogen receptor(ER) genes in Japanese eel. Immature eels($200{\sim}250\;g$) were given a single injection of $E_2(5{\sim}5,000\;{\mu}g/kg\;bw)$ alone, or in combination with eel recombinant GH(eGH, $1{\sim}10\;{\mu}g/kg$) or methyltestosterone(MT, $1{\sim}5\;mg/kg$) and sacrificed 10 days after the hormone treatments. Expression levels of ER and Vg genes from the liver were determined by means of reverse transcription and polymerase chain reaction(RT-PCR). Administration of $E_2$ stimulated Vg gene expression in a dose dependent manner. Levels of Vg mRNA after the injection of $E_2(500\;{\mu}g/kg)$ with MT(5mg/kg) or eGH($10\;{\mu}g/kg$) were much higher than in that of $E_2$ alone($500\;{\mu}g/kg$). Whereas, injection of either vehicle, eGH ($10\;{\mu}g/kg$) or MT(5mg/kg) alone did not induce the expression of Vg gene in the liver. ER mRNA was detected from the fish treated with vehicle alone. $E_2$ injection($5{\sim}500\;{\mu}g/kg\;bw$) increased this ER expression but dose dependent response was not clear. Addition of MT(5mg/kg) or eGH($10\;{\mu}g/kg$) did not affect $E_2-stimulated$ ER mRNA expression. This study confirms the necessity of $E_2$ as the primary factor for Vg gene expression and requirement of additional hormones such as MT or GH for the full expression of Vg mRNA, and suggests that the additive effect of MT or GH on Vg gene expression would be mediated by some unknown factors other than ER.

  • PDF

Reproductive Capacity in Starry Flounder Platichthys stellatus from Uljin Marine Ranching Area, Korea (울진 바다목장 해역에 서식하는 강도다리(Platichthys stellatus)의 번식능력)

  • Hwang, In-Joon;Lee, Jae-Bong;Choi, Sang-Jun;Kim, Seol-Ki;Cha, Hyung-Kee;Oh, Taeg-Yun;Baek, Hea-Ja
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.3
    • /
    • pp.253-261
    • /
    • 2012
  • We investigated the reproductive capacity of starry flounder Platichthys stellatus from the Uljin (UJ) marine ranching area and compared it to that of P. stellatus from the coastal waters of Pohang (PH). In UJ, female gonadosomatic index (GSI) peaked in October ($3.14{\pm}0.87$) and male GSI was high in October and December. In PH, female GSI peaked in January ($18.64{\pm}2.15$) while male GSI began to increase in October and remained high until March. Most ovaries of UJ females were immature with perinucleus oocytes, although the testes of UJ males were ripe in January. Both the ovaries and testes of PH starry flounders were ripe from January to March. The plasma estradiol-$17{\beta}$ ($E_2$) levels of UJ females were highest in October ($4.09{\pm}1.90$ ng/mL) although the testosterone (T) levels of UJ males were highest in December ($3.81{\pm}0.78$ ng/mL) and decreased gradually until April. The $17{\alpha}$,$20{\beta}$-dihydroxy-4-pregnen-3-one ($17{\alpha}20{\beta}P$) levels of UJ females were not detected. The E2 levels of PH females were highest in December ($36.25{\pm}33.07$ ng/mL) and $17{\alpha}20{\beta}P$ levels were highest in March ($5.51{\pm}0.95$5 ng/mL). The T levels of PH males were highest in December ($4.03{\pm}1.34$ ng/mL) and decreased gradually until October. Taken together, these results suggest that most females from UJ did not reach maturation with a spawning period that was considered to be between December and January.