• Title/Summary/Keyword: Feedrate scheduling

Search Result 9, Processing Time 0.025 seconds

Calculation of a reference force for feedrate scheduling using the FEM analysis of a tool (엔드밀링 공구의 유한요소해석을 통한 이송속도 스케줄링의 기준 절삭력 산출)

  • 이한울;조동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.416-421
    • /
    • 2004
  • Off-line feedrate scheduling is presented as the advanced technology to regulate cutting forces at the desired level through change of feedrates. In rough cutting, the feedrate scheduling aims at reducing the machining time, which is the most important factor for better productivity. Thus, the largest force which can avoid breakage of tool shank and tooth is a reference force for feedrate scheduling in rough cutting. In this paper, a calculation method of the reference cutting force for feedrate scheduling is developed. This model calculates rupture plane of tooth using the FEM analysis of a tool and computes the reference force using the transverse rupture strength of a tool. Experiments validate that the presented feedrate scheduling model reduced machining time drastically and regulate cutting forces at the reference cutting force.

  • PDF

A Study on feedrate Optimization System for Cutting Force Regulation (절삭력 추종을 위한 이송속도 최적화 시스템에 관한 연구)

  • 김성진;정영훈;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.214-222
    • /
    • 2003
  • Studies on the optimization of machining process can be divided into two different approaches: off-line feedrate scheduling and adaptive control. Each approach possesses its respective strong and weak points compared to each other. That is, each system can be complementary to the other. In this regard, a combined system, which is a feedrate control system fur cutting force optimization, was proposed in this paper to make the best of each approach. Experimental results show that the proposed system could overcome the weak points of the off-line feedrate scheduling system and the adaptive control system. In addition, from the figure, it can be confirmed that the off-line feedrate scheduling technique can improve the machining quality and can fulfill its function in the machine tool which has a adaptive controller.

Development of Accurate Cutting Simulation and Feedrate Scheduling System for CNC Machining (CNC 가공의 정밀 절삭 시뮬레이션 및 이송속도 스케줄링 시스템 개발)

  • 이한울;고정훈;조동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.370-375
    • /
    • 2004
  • This paper presents an accurate cutting simulation and feedrate scheduling system for CNC machining. This system is composed of a cutting simulation part and a feedrate scheduling part. The cutting simulation part computes the geometric informations and calculates the cutting forces in CNC machining. The cutting force model using cutting-condition-independent coefficients was introduced for flat end milling and ball end milling. The feedrate scheduling part divides original blocks of NC code into smaller ones with optimized feedrates to adjust the peak value of cutting forces to reference forces. Some machining examples show that the developed system can control the cutting force at desired levels.

  • PDF

Feedrate Scheduling for High Speed Machining Based on an Improved Cutting Force Model (향상된 절삭력 모델을 이용한 고속 가공의 이송속도 스케줄링)

  • 이한울;고정훈;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.141-144
    • /
    • 2003
  • This paper proposes an analytical model of off-line feed rate scheduling to obtain an optimum feed rate for high speed machining. Off-line feed rate scheduling is presented as an advanced technology to regulate cutting forces through change of feed per tooth, which directly affects variation of uncut chip thickness. In this paper, the feed rate scheduling model was developed using a mechanistic cutting force model using cutting-condition-independent coefficients. First, it was verified that cutting force coefficients are not changed with respect to cutting speed. Thus, the feed rate scheduling model using the cutting-condition-independent coefficients can be applied to set the proper feed rates for high speed machining as well as normal machining. Experimental results show that the developed fred rate scheduling model makes it possible to maintain the cutting force at a desired level during high speed machining.

  • PDF

A Study on Feedrate Optimization System for Cutting Force Optimization (절삭력 최적화를 위한 이송속도 제어 시스템에 관한 연구)

  • 김성진;정영훈;조동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.135-140
    • /
    • 2002
  • Studies on the optimization of machining process can be divided into two different approaches: off-line feedrate scheduling and adaptive control. Each approach possesses its respective strong and weak points compared to each other. That is, each system can be complementary to the other. In this regard, a combined system, which is a feedrate control system for cutting force optimization, was proposed in this paper to make the best of each approach. Experimental results show that the proposed system could overcome the weak points of two systems.

  • PDF

NURBS Surface Interpolator for Constant Cutting Forces in Ball-End Milling (볼엔드 밀링에서의 일정 절삭력을 위한 NURBS 곡면 인터폴레이터)

  • Ji, Seong-Cheol;Gu, Tae-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1888-1896
    • /
    • 2002
  • This study presents a new type of CNC interpolator that is capable of generating cutter paths for ball-end milling of NURBS surfaces. The proposed surface interpolator comprises real-time algorithms for cutter contact (CC) path scheduling and CC path interpolator. Especially in this study, a new interpolator module to regulate cutting forces is developed. This propose algorithm utilizes variable-feedrate commands along the CC path according to the curvature of machined surfaces during the interpolation process. Additionally, it proposes an OpenGL graphic library for computer graphics and animation of interpolated tool-position display. The proposed interpolator is evaluated and compared with the existing method based on constant feedrates through computer simulations.

Real-Time Variable-Feedrate NURBS Surface Interpolator (실시간 가변속 NURBS 곡면 인터폴레이터)

  • 구태훈;지성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.371-374
    • /
    • 1997
  • This study presents a new type of real-t~me CNC interpolator that is capable of generating cutter paths for ball-end milling of NURBS surfaces. The proposed surface interpolator comprises real-time algorithms for cutter-contact (CC) path scheduling and CC path interpolation. Especially, in this study, a new interpolator module to regulate cutting forces is developed. This proposed algorithm utilizes variable-feedrate commands according to the curvature of machined surfaces. The proposed interpolator is evaluated and compared with the conventional method based on constant feedrates through computer simulation.

  • PDF

NC Code Optimization Based on an Improved Cutting Force Model (향상된 절삭력 모델 기반의 NC 코드 최적화)

  • 이한울;고정훈;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.37-42
    • /
    • 1997
  • Off-line feed rate scheduling is an advanced methodology to automatically determine optimum feed rates for the optimization of NC code. However, the present feed rate scheduling systems have lim~tations to generate the optimized NC codes because they use the material removal rate or non-generalized cutting force model. In this paper, a feed rate scheduling system based on an improved cutting force model that can predrct cutting forces exactly in general machining was presented. Original blocks of NC code were divided to small ones with the modified feed rates to adjust the peak value of cutting forces to a constant vale. The characteristic of acceleration and deceleration for a given machrne tool was considered when off-line feed rate scheduhng was performed. Software for the NC code optimization was developed and applied to pocket machining simulation.

  • PDF