• 제목/요약/키워드: Feedrate control method

검색결과 30건 처리시간 0.026초

실험적 방법에 기초한 칩브레이크 선정 (Selection of chip breaker based on the experiment)

  • 전준용;허만성;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.271-275
    • /
    • 1995
  • Chip control is a major problem in automatic machining process, especially in finish operation. Chip breaker is one of the important factors to be determined for the scheme of chip control. As unbroken chips are grown, there deteriorate quality of the surface roughness and process automation can be carried out. In this study, to get rid of chip curling problem while turning internal hole, optimal chip breaker is selected form the experiment. The experiment is planned with Taguchi's method that is based on the orthogonal arrary of design factor. From the respose table, cutting speed, feedrate, depth of cut, and tool geometry are major factors affecting chip formation. Then, optmal chip breaker is selected and this is verified good enough for chip control from the experiment.

  • PDF

실시간 곡면 가공에 관한 제어 알고리즘 및 하드웨어 연구 (Realtime control algorithm and hardware for machining curved surfaces)

  • 정승권;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1320-1323
    • /
    • 1996
  • This paper describes an interpolation method for a parametric surface. A parametric surface is approximated to triangular mesh surfaces and then the basic paths are achieved. As the generated path is a series of linear segments, this algorithm can be easily adapted to general NC controllers. The generated paths have minimal transfer length and are gouge-free within the approximation tolerance. The problems, induced when the paths are represented by linear segments, are overcome without making any path deviation by this algorithm. This algorithm saves machining time by eliminating overdetermined tool paths and keeping the desired average feedrate, which improve productivity and lead to lower production costs.

  • PDF

정밀 윤곽가공을 위한 적응 교차축 연동제어기 (Adaptive Cross-Coupling Controller for Precision Contour Machining)

  • 윤상필;지성철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.8-13
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control (CCC) method with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. In addition, a real-time federate adaptation scheme is included in the proposed CCC to regulate cutting force. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy and regulates cutting force more effectively than the existing method.

  • PDF

CNC 머시닝센터의 정밀도 향상을 위한 반복학습제어 (An Iterative Learning Control for the Precision Improvement of a CNC Machining center)

  • 최종호;유경열;장태정
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.38-44
    • /
    • 1995
  • We made a counter to measure the output of motor encoders for the motion error analysis of a CNC machining center, and have measured the dynamic characteristics and the position errors experimentally. Especially, we measured the radius errors for different feedrates and different radii when the CNC machining center performed a circular interpolation. We have also used an iterative learning method to reduce the radius errors and stick motion errors generated by the CNC machining center performing a circular interpolation. The results show that the proposed learning scheme can reduce the radius error and stick motion error significantly. The reduction of errors becomes more pronounced for higher feedrate and smaller radius.

2축 시퀀스 제어 스테이지와 미세입자 분사장치에 의한 형상 분사가공시 실험계획법에 의한 주요인자 검출 (Selection of Main Factors by Experimental Analysis for Profile Blast Machining Based on Microparticle Blasting Equipment with a Two-Axis Sequence Control Stage)

  • 황철웅;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.64-69
    • /
    • 2020
  • To determine the effective factors for microparticle blasting with precise sequence position control in the x-axis and y-axis directions, we conducted a statistical experimental analysis of blasted square shapes by considering five condition factors. The control input and output were operated simultaneously by rotation-linear motion conversion and fine particles were blasted onto the aluminum specimen by precise position control driving using multiple execution codes. The micro-driving device used for processing was capable of microparticle blasting and of controlling the system through contact with a limit sensor at high speed and a two-degree-of-freedom driving mechanism. Our experiments were conducted on 1,050 specimens of pure aluminum (containing <1% of other elements). The effects of several factors (e.g., particle and nozzle diameters, blasting pressure, and federate and blasting cycle numbers) on the surface roughness and blasted surface's depth were verified through a statistical experimental analysis by applying the dispersion analysis method. This statistical analysis revealed that the nozzle diameter, the blasting pressure, and the blasting cycle number were the dominant factors.

고정밀 고속 윤곽가공을 위한 3축 연동제어기 (3-Axis Coupling Controller for High-Precision/High-Speed Contour Machining)

  • 지성철;구태훈
    • 대한기계학회논문집A
    • /
    • 제28권1호
    • /
    • pp.40-47
    • /
    • 2004
  • This paper proposes a three-axis coupling controller designed to improve the contouring accuracy in machining of 3D nonlinear contours. The proposed coupling controller is based on an innovative 3D contour error model and a PID control law. The novel contour error model provides almost exact calculation of contour errors in real-time for arbitrary contours and can be integrated with any type of existing interpolator. In the proposed method, three axes of motion are coordinated by the proposed coupling controller along with a proportional controller for each axis. The proposed contour error model and coupling controller are evaluated through computer simulations. The simulation results show that the proposed 3-axis coupling controller with the new contour error model substantially can improve the contouring accuracy by order of magnitude compared with the existing uncoupled controllers in high-speed machining of nonlinear contours.

슬라이딩 모드 제어기를 이용한 밀링공정의 절삭력 제어 (Cutting Force Regulation in Milling Process Using Sliding Mode Control)

  • 이상조;이용석;고정한
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1173-1182
    • /
    • 2001
  • Recent noticeable advances of CNC machine tools have considerably improved productivity and precision in manufacturing processes. However, in the respect of productivity some defects still remain because selection of machining conditions entirely depends on the experiences of programmers. Usually, machining conditions such as feed rate and spindle speed have been selected conservatively by considering the worst cases, and it has brought the loss of machining efficiency. Thus, the improvement of cutting force controller has been done to regulate cutting force constantly and to maximize feedrate simultaneously in case that machining conditions change variously. In this study, sliding mode control with boundary layer is applied to milling process for cutting force regulation and in a commercial CNC machining center data transfer between PC and PMC (programmable machine controller) of CNC machine is done using a standard interface method. And in the cutting force measurement, an indirect cutting force measuring system using current signal of AC servo is adopted in order not to use high-priced equipment like tool dynamometer. The purpose of this study is to maximize the productivity in milling process, thus its results can be applied to cases such as rough cutting process.

NURBS 적응보간기를 이용한 Jerk 제한 이송속도 생성 (Design of Jerk Bounded Feed Rate with Look Ahead using Adaptive NURBS Interpolator)

  • 권성환;모한 세카르;양승한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.457-458
    • /
    • 2006
  • A method for obtaining smooth, jerk bounded feed rate profile in high speed machining has been developed. This study proposes a NURBS interpolator based on adaptive feed rate control with a well developed look ahead algorithm which takes into account the machining dynamics as well. Limitation of jerk and proportional torque rate result in smoothened loads on the machine which effectively reduces excitation of the resonant frequencies of the machine. It is found that the values of the feed rate of the down stream sharp corner have profound effect on the feed rate of the upstream sharp corners. By using a windowing scheme the feed rate profile obtained after look ahead method is re-interpolated to reduce the jerk related problems. This is compared with the adaptive NURBS interpolator to show the effectiveness of the proposed method. Simulation results indicate that the consideration of 'ripple effect' is important in avoiding jerk and thereby increasing the machining accuracy.

  • PDF

원주 TIG 용접에서 이면 비드 형상 제어를 위한 Filter Wire 송급힘과 용접자세의 상관관계에 대한 연구 (A study on the mapping between the feeding force of filter wire and welding position for the control of back bead shape in orbital TIG welding)

  • 강선호;조형석;장희석;우승엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.792-795
    • /
    • 1996
  • In TIG welding of pipe, back bead size monitoring is important for weld quality assurance. Many researches have been performed on estimation of the back bead size by heat conduction analysis. However numerical conduction model based on many uncertain thermal parameters causes remarkable errors and thermomechanical phenomena in molten pool can not be considered. In this paper, filler wire feeding force in addition to weld current, wire feedrate, torch travel speed and orbital position angle is monitored to estimate back bead size in orbital TIG welding. Monitored welding process variables are fed into an artificial neural network estimator which has been trained with the monitored process variables (input patterns) and actual back bead size (output patterns). Experimental verification of the proposed estimation method was performed. The predicted results are in a good agreement with the actual back bead shape. The results are quite promising in that estimation of invisible back bead shape can be achieved by analyzing the welding parameters without any conventional NDT of welds.

  • PDF

마이크로금형 구배각 제어를 위한 절삭가공조건 예측모델에 관한 연구 (A Study On Prediction Model of Cutting Conditions for Draft Angle Control)

  • 조지현;송병욱;서태일
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.387-393
    • /
    • 2012
  • It is very difficult to determine suitable cutting conditions in order to obtain accurate cutting profiles because machining errors caused by tool deflection depend upon cutting conditions. In this study the relationship between real cutting profiles (inclined shapes and machining errors) and cutting conditions was modeled in order to fabricate draft angle on micro molds. CCD (Central Composite Design) of DOE (Design Of Experiment) and RSM (Response Surface Method) were applied in order to model the relationship between cutting conditions and machining errors. In order to use CCD the range of radial depth of cut was chosen by $10-90{\mu}m$ and the range of feedrate was chosen by 200-300mm/min, and 9 points of cutting conditions were chosen inside determined ranges. Then, actual cutting processes were carried out as respect to 9 points of cutting conditions, draft angles and real cutting profiles were measured on cutting profiles, each response surface function was determined by conducting response surface analysis and the functions were represented by 3-dimensional graphs, contour lines and $101{\times}101$ matrices. Consequently it is possible to determine suitable cutting conditions in order to obtain arbitrary given draft angles and cutting profiles by using modeling. To validate proposed approach in this study suitable cutting conditions were determined by modeling in order to obtain arbitrary given draft angle and cutting profile, and actual cutting processes were carried out. About 95% of good agreement between predicted and measured values was obtained.