• 제목/요약/키워드: Feeder Flow Control Mode

검색결과 4건 처리시간 0.016초

마이크로그리드에서 하이브리드 시스템의 Feeder Flow Mode 운영을 위한 제어 알고리즘 (Control Algorithm of Hybrid System for Feeder Flow Mode Operation in Microgrid)

  • 문대성;서재진;김윤성;원동준
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Active power control scheme for distributed generation in microgrid consists of feeder flow control and unit power control. Feeder flow control is more useful than the unit power control for demand-side management, because microgrid can be treated as a dispatchable load at the point of common coupling(PCC). This paper presents detailed descriptions of the feeder flow control scheme for the hybrid system in microgrid. It is divided into three parts, namely, the setting of feeder flow reference range for stable hybrid system operation, feeder flow control algorithm depending on load change in microgrid and hysteresis control. Simulation results using the PSCAD/EMTDC are presented to validate the inverter control method for a feeder flow control mode. As a result, the feeder flow control algorithm for the hybrid system in microgrid is efficient for supplying continuously active power to customers without interruption.

분산전원의 구성 및 출력 제어 방법에 따른 Droop 계수 설정 방법 (A Method to Determine the Droop Constant of DGs Considering the Configuration and Active Power Control Mode)

  • 안선주;박진우;정일엽;문승일
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1954-1961
    • /
    • 2008
  • Microgrid usually consists of a cluster of distributed generators(DGs), energy storage systems and loads, and can operate in the grid-connected mode and the islanded mode. This paper presents detailed descriptions of two different options for controlling the active power of DGs in the microgrid. One is regulating the power injected by the unit to a desired amount(Unit output power control) and the other is to regulate the flow of active power in the feeder where the unit is installed to a constant(Feeder flow control). Frequency-droop characteristics are used to achieve good active power sharing when the microgrid operates in the islanded mode. The change in the frequency and the active power output of DGs are investigated according to the control mode and the configuration of DGs when the microgrid is disconnected from the main grid. From the analysis, this paper proposes a method to determine the droop constant of DGs operating in the feeder flow control mode. Simulation results using the PSCAD/EMTDC are presented to validate the approach, which shows good performance as opposed to the conventional one.

마이크로그리드에서 태양광-연료전지 하이브리드 시스템의 Feeder Flow Mode 운영 기법 (Feeder Flow Control Algorithm for Photovoltaic-Fuel cell Hybrid System in Micro-Grid)

  • 문대성;강기혁;김윤성;서재진;원동준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.161-163
    • /
    • 2008
  • The paper deals with a inverter control scheme to apply feeder flow control in the hybrid system consisted of a photovoltaic system and a fuel-cell system. The inverter operation modes and a feeder control reference is changed by changing of the loads. Simulation results using the PSCAD/EMTDC are presented to establish a inverter control method for a Feeder flow control mode.

  • PDF

Power Sharing Method for a Grid connected Microgrid with Multiple Distributed Generators

  • Nguyen, Khanh-Loc;Won, Dong-Jun;Ahn, Seon-Ju;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.459-467
    • /
    • 2012
  • In this paper, a grid connected microgrid with multiple inverter-based distributed generators (DGs) is considered. DG in FFC mode regulates the microgrid as a controllable load from the utility point of view as long as its output is within the capacity limit. The transition mode causes a change in frequency of microgrid due to the loss of power transferred between main grid and microgrid. Frequency deviation from the nominal value can exceed the limit if the loss of power is large enough. This paper presents a coordinated control method for inverter-based DGs so that the microgrid is always regulated as a constant load from the utility viewpoint during grid connected mode, and the frequency deviation in the transition mode is minimized. DGs can share the load by changing their control modes between UPC and FFC and stabilize microgrid during transition.