• Title/Summary/Keyword: Feedback linearization control

Search Result 302, Processing Time 0.026 seconds

Quadcopter stabilization using state feedback controller by pole placement method

  • Tengis, Tserendondog;Batmunkh, Amar
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Nowadays many articles describe the controlling models for four rotor flying vehicle. Basic approaches to the problem of these articles are mathematical expressions describing dynamics of the models of the vehicle and PID control for manipulating the object in 3 dimensional space. Design of control systems is usually started by careful consideration of its mathematical model description. We present a detailed mathematical model for a quad rotor. This paper first considers simulation of quadcopter control based on full state feedback technique with linearization in MATLAB environment and shows the results of the simulations. Finally will be shown experimental results of the state feedback control implemented in real model.

Design of the Feedback linearizing Nonlinear Control with Uncertain Parameter. (미지의 파라메터를 가진 비선형 시스템의 궤환 선형화 제어기개발.)

  • Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1134-1136
    • /
    • 1996
  • A necessary and suficient conditions is proposed for feedback linearizable SISO systems with unknown constant parameters. It is shown that the systems which satisfy the proposed conditions can be transformed into a controllable linear system with unknown parameter and it can be stabilized using the nonlinear feedback linearizing controller. We also present the analysis and implementation of a nonlinear feedback linearizing control for an Electro-Magnetic Suspension (EMS) system. We show that an EMS system is nonlinear feedback linearizable and satisfies the proposed conditions, and hence that the proposed nonlinear feedback controller for an EMS system is robust against mass parameter perturbation and force disturbance.

  • PDF

Application of Nonlinear Feedback Control to an Articulated Manipulator (수직다관절 매니퓰레이터에 대한 비선형 되먹임제어의 응용)

  • Y.S. Baek;C.I. Yang;H.S. Aum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.104-114
    • /
    • 1995
  • Mathematical models of industrial robots or manipulators are composed of highly nonlinear equations with nonlinear couplings between the variables of motions. These nonlin- earities were not considered important in the first stage that the working speed of the manipulator was not so fast, but the effect of nonlinear forces has become serious, as the working speed has been increased. So more improvement of performance cannot be expected by the control of manipulator using approximate linearization. As an approach for solving these problems, there is a method that eliminates nonlinear theory, which makes possible cecoupling of coupling terms and arbitrary arranging of poles is briefly introduced in this study. When the theory is applied to design the control law, its feasibility is examined whether the reasonable control results are obtained by simulating position, velocity, torque and tracing trajectory. The relations between the coefficients of the linearized differential equations and the maximum error and torque for the prescribed trajectory are also examined. Finally, the method for selecting the values for getting the most rapid and precise response within maximum torque of each drive is suggested in the choice of coefficients of characteristic equations which are obtained as a result of the control.

  • PDF

Input-Output Feedback Linearization of Sensorless IM Drives with Stator and Rotor Resistances Estimation

  • Hajian, Masood;Soltani, Jafar;Markadeh, Gholamreza Arab;Hosseinnia, Saeed
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.654-666
    • /
    • 2009
  • Direct torque control (DTC) of induction machines (IM) is a well-known strategy of these drives control which has a fast dynamic and a good tracking response. In this paper a nonlinear DTC of speed sensorless IM drives is presented which is based on input-output feedback linearization control theory. The IM model includes iron losses using a speed dependent shunt resistance which is determined through some effective experiments. A stator flux vector is estimated through a simple integrator based on stator voltage equations in the stationary frame. A novel method is introduced for DC offset compensation which is a major problem of AC machines, especially at low speeds. Rotor speed is also determined using a rotor flux sliding-mode (SM) observer which is capable of rotor flux space vector and rotor speed simultaneous estimation. In addition, stator and rotor resistances are estimated using a simple but effective recursive least squares (RLS) method combined with the so-called SM observer. The proposed control idea is experimentally implemented in real time using a FPGA board synchronized with a personal computer (PC). Simulation and experimental results are presented to show the capability and validity of the proposed control method.

Design of Autolanding Guidance and Control Algorithm Using Singular Perturbation (특이섭동법을 이용한 비행체 자동착륙 유도제어 알고리즘 설계)

  • Ha, Cheol-Keun;Choi, Hyoung-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.726-732
    • /
    • 2005
  • This paper proposes an autolanding guidance and control algorithm with the lateral guidance law. This algorithm is basically formulated and designed in feedback linearization based on singular perturbation. Main features of this algorithm are two facts. One of those is that when a certain situation happens that airplane must realign to the runway suddenly assigned due to unexpected environment change around the landing site, the heading guidance in this algorithm is very valuable, and the other is the fact that the inner loop control of this algorithm is able to be designed directly based on the Handling Quality Requirements that most flight control systems must be satisfied with. To illustrate the potential of this algorithm, 6-DOF nonlinear simulation based on the nonlinear airplane model shown in Ref.[11] is carried out. The simulation results showed that the altitude response to the given landing trajectory is accurate, and the airplane heading alignment to the assigned runway from the lateral deviation is successful. It is noted that this algorithm is also applicable to unmanned aerial vehicle, which can be retrieved in autolanding technique, where the runway far retrieving the vehicle is in any direction for example at war field.

Improvement of the Characteristics of Feedforward Power Amplifier using Negative Feedback method (Feedback을 첨가한 IMT-2000용 l0W급 Feedforward 선형 전력 증폭기의 설계 및 제작)

  • 류병하;장중호;김성민;최현철
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.345-348
    • /
    • 2000
  • In this paper, A Feedforward Linear Power Amplifier for IMT-2000 which IMD characteristics was improved was designed and fabricated. To improve the main power amplifier IMD characteristics, the Feedback loop was added to basic Feedforward Power Amplifier structure. Therefore, the output power of error amplifier can be reduced, and it is easy to control the linearization circuit to cancel total IMD. The designed power amplifier represented the 40㏈m(l0W) output power and -55㏈C 3rd IMD at Center frequency 2.14㎓ (@5㎒).

  • PDF

Digital Feedback Linerization of the Nonlinear System (비선형 시스템의 디지털 Feedback 선형화 기법)

  • 이홍기;전홍태;김찬호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.33-42
    • /
    • 1994
  • The sampling is inevitable in controlling the nonlinear continuous time system. This paper deals with digital feedback linearization problem which eliminates or reduces the effect of the sampling. Necessary and sufficient condition for reducing the sampling error up to O$(h^5)$ are obtained. Also, the effectiveness of our control scheme in accuracy and robustness is shown by comuter simulations.

  • PDF

Controller Development for a Single-Magnet Suspension System Using Nonlinear Feedback Linearization (비선형궤환 선형화 기법을 사용한 단일 자석 자기부상 시스템의 제어기 개발)

  • 진주화;서진헌;김국헌
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.292-299
    • /
    • 1992
  • A nonlinear feedback linearizing control method for an EMS (Electro-Magnetic Suspension) system is proposed. After linearzing the system using the exact linearizing method, conventional linear system control theory has been applied. Robustness properties of the proposed controller with respect to the load variations is also analysed for a single magnet suspension system. Computer simulation is carried out in order to compare the performance of the proposed controller with that of the existing controller designed by using Taylor series expansion around nominal points.

  • PDF

Design and Analysis of a State Feedback Controller for a Chain of Integrators System under Measurement Noise (측정에러가 있는 적분기 시스템에서의 상태 궤환 제어기 설계 및 분석)

  • Youn, Jae-Seung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.969-974
    • /
    • 2010
  • In this paper, we propose a fault-tolerant controller for compensating measurement noise of feedback sensor. Because control systems operate via feedback sensor's signal, the measurement noise in sensor's signal results in performance degradation or even system failure. Therefore, control systems often demand on compensating measurement noise. Our controller is equipped with a compensator in order to reject or reduce the effect of measurement noise in feedback information. Our proposed method is verified via simulation and experiment for a Ball and Beam system.

Design of A Robust Adaptive Controller for A Class of Uncertain Non-linear Systesms with Time-delay Input

  • Nguyen, Thi-Hong-Thanh;Cu, Xuan-Thinh;Nguyen, Thi-Minh-Huong;Ha, Thi-Hoan;Nguyen, Dac-Hai;Tran, Van-Truong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1955-1959
    • /
    • 2005
  • This paper presents a systematic analysis and a simple design of a robust adaptive control law for a class of non linear systems with modeling errors and a time-delay input. The theory for designing a robust adaptive control law based on input- output feedback linearization of non linear systems with uncertainties and a time-delay in the manipulated input by the approach of parameterized state feedback control is presented. The main advantage of this method is that the parameterized state feedback control law can effectively suppress the effect of the most parts of nonlinearities, including system uncertainties and time-delay input in the pp-coupling perturbation form and the relative order of non linear systems is not limited.

  • PDF