• Title/Summary/Keyword: Feedback delay network

Search Result 91, Processing Time 0.023 seconds

Dynamic Channel Time Allocation Scheme for Multimedia Traffic with Delay Bound in High-Rate Wireless PANs (고속율 무선 PAN에서 지연한도를 갖는 멀티미디어 트래픽을 위한 동적 채널시간할당 방법)

  • Kim Sun-Myeng;Cho Young-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.1-12
    • /
    • 2005
  • In wireless personal area networks(PANs), the successful design of channel time allocation algorithm is a key factor in guaranteeing the various quality of service(QoS) requirements for the stringent real-time constraints of multimedia services. In this paper we propose a dynamic channel time allocation algerian for providing delay guarantees to multimedia traffics such as MPEG streams in the IEEE 802.15.3 high-rate WPANs. The dynamic algorithm exploits the characteristics of MPEG stream, wherein the devices (DEVs) send their channel time requests only at the end of superframe boundaries. The algerian uses mini packets for feedback control in order to deliver dynamic parameters for channel time requests from the DEVs to the piconet coordinator (PNC). In this scheme, the duration of channel time allocated to a DEV during a superframe is changed dynamically depending on the MPEG frame type, traffic load and delay bound of the frame, etc. Performance of the proposed scheme is investigated by simulation. Our results show that compared to traditional scheme, the proposed scheme is very effective and has high performance while guaranteeing the delay bound.

Design Methodology of Networked Control System using CAN(Controller Area Network) Protocol (CAN(Controller Area Network) 프로토콜을 이용한 네트워크 제어시스템 설계)

  • Jung, Joon-Hong;Choi, Soo-Young;Cho, Yong-Seok;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2328-2330
    • /
    • 2003
  • This paper presents a new design methodology of networked control system using CAN(Controller Area Network). Feedback control systems having control loops closed through a network are called networked control systems. We design CAN nodes which can transmit control and monitoring data through network bus and apply these to networked control system design. We analyze the variation of stability property according to network-induced delay and determine a proper sampling period of networked control system that preserves stability performance. The results of the experimental example validate effectiveness of our networked control system.

  • PDF

Prioritized Multipath Video Forwarding in WSN

  • Asad Zaidi, Syed Muhammad;Jung, Jieun;Song, Byunghun
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.176-192
    • /
    • 2014
  • The realization of Wireless Multimedia Sensor Networks (WMSNs) has been fostered by the availability of low cost and low power CMOS devices. However, the transmission of bulk video data requires adequate bandwidth, which cannot be promised by single path communication on an intrinsically low resourced sensor network. Moreover, the distortion or artifacts in the video data and the adherence to delay threshold adds to the challenge. In this paper, we propose a two stage Quality of Service (QoS) guaranteeing scheme called Prioritized Multipath WMSN (PMW) for transmitting H.264 encoded video. Multipath selection based on QoS metrics is done in the first stage, while the second stage further prioritizes the paths for sending H.264 encoded video frames on the best available path. PMW uses two composite metrics that are comprised of hop-count, path energy, BER, and end-to-end delay. A color-coded assisted network maintenance and failure recovery scheme has also been proposed using (a) smart greedy mode, (b) walking back mode, and (c) path switchover. Moreover, feedback controlled adaptive video encoding can smartly tune the encoding parameters based on the perceived video quality. Computer simulation using OPNET validates that the proposed scheme significantly outperforms the conventional approaches on human eye perception and delay.

2-Polling Feedback Scheme for Stable Reliable Broadcast in CSMA Wireless Networks (CSMA 무선 네트워크에서 안정성 있는 신뢰적 브로드캐스트를 위한 2-폴링 피드백 방법)

  • Yoon, Wonyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.12
    • /
    • pp.1208-1218
    • /
    • 2012
  • Disseminating broadcast information stably and reliably in IEEE 802.11-like CSMA wireless networks requires that a source should seek collision-free transmission to multiple receivers and keep track of the reception state of the multiple receivers. We propose a simple yet efficient feedback scheme for stable reliable broadcast in wireless networks, called 2-polling feedback, where the state of two receivers are checked by a source before its broadcast transmission attempt We present a performance analysis of the class of reliable broadcast feedback schemes in terms of two performance metrics (packet transmission delay and packet stable time). The analysis results show that the proposed 2-polling feedback scheme outperforms the current existing classes of feedback schemes in the literature, i.e., all-polling feedback and 1-polling feedback. The 2-polling feedback scheme has lower asymptotic complexity than the all-polling feedback, and has the same asymptotic complexity as the 1-polling feedback but exhibits almost 50 % reduction in packet stable time.

A Feedback Control Model for ABR Traffic with Long Delays (긴 지연시간을 갖는 ABR 트래픽에 대한 피드백제어 모델)

  • O, Chang-Yun;Bae, Sang-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1211-1216
    • /
    • 2000
  • Asynchronous transfer mode (ATM) can be efficiently used to transport packet data services. The switching system will support voice and packet data services simultaneously from end to end applications. To guarantee quality of service (QoS) of the offered services, source rateot send packet data is needed to control the network overload condition. Most existing control algorithms are shown to provide the threshold-based feedback control technique. However, real-time voice calls can be dynamically connected and released during data services in the network. If the feedback control information delays, quality of the serviced voice can be degraded due to a time delay between source and destination in the high speed link. An adaptive algorithm based on the optimal least mean square error technique is presented for the predictive feedback control technique. The algorithm attempts to predict a future buffer size from weight (slope) adaptation of unknown functions, which are used fro feedback control. Simulation results are presented, which show the effectiveness of the algorithm.

  • PDF

An ABR Service Traffic Control of Using feedback Control Information and Algorithm (피드백 제어 정보 및 알고리즘을 이용한 ABR 서비스 트래픽제어)

  • 이광옥;최길환;오창윤;배상현
    • Journal of Internet Computing and Services
    • /
    • v.3 no.3
    • /
    • pp.67-74
    • /
    • 2002
  • Asynchronous transfer mode (ATM) can be efficiently used to transport packet data services. The switching system will support voice and packet data services simultaneously from end to end applications. To guarantee quality of service (QoS) of the offered services, source rate to send packet data is needed to control the network overload condition. Most existing control algorithms are shown to provide the threshold-based feedback control technique. However, real-time voice calls can be dynamically connected and released during data services in the network. If the feedback control information delays, quality of the serviced voice can be degraded due to a time delay between source and destination in the high speed link, An adaptive algorithm based on the optimal least mean square error technique is presented for the predictive feedback control technique. The algorithm attempts to predict a future buffer size from weight (slope) adaptation of unknown functions, which are used for feedback control. Simulation results are presented, which show the effectiveness of the algorithm.

  • PDF

Reliable Message Routing Protocol for Periodic Messages on Wireless Sensor Networks (무선센서 네트워크에서 주기적 메시지에 대해 신뢰성 있는 메시지 전송을 위한 라우팅 프로토콜)

  • Ngo, Hoai Phong;Kim, Myung-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.190-197
    • /
    • 2011
  • In industrial distributed control systems, sensors collect data from the physical environment periodically and transmit them to the actuators, which process the control operations based on the received data. For the effective operation of the control systems, the data transmitted by the sensors has to be delivered to the actuators reliably within the deadline, and if the message reception rate of the actuators becomes lower than a threshold, then the performance of the control systems drops greatly. This paper suggests a message routing protocol to transmit periodic messages reliably in a distributed control system based on wireless sensor networks. For reliable message transmission, the proposed protocol selects a routing path whose end-to-end message reception rate is the highest before transmitting data messages. The proposed protocol has the capability of maintaining a target message reception rate for each flow. To maintain the required target reception rate, each destination monitors the actual message reception rate periodically and transmits a feedback message to the source if it drops below the target reception rate. On receiving the feedback message, the source tries to find a new path which can satisfy the target rate. The performance of the proposed protocol has been evaluated using simulation and compared with other protocols in terms of the message reception rate, the message delay and delay jitter, and so on. The simulation results show that the proposed protocol has a higher message reception rate and comparable message delay and delay jitter to other protocols. The simulation results also show that the proposed protocol has an ability to adapt well to the dynamic network traffic change.

Congestion Control for the ABR Service of ATM networks with Multiple Congested Nodes and Multicast Connections (다수의 혼잡 노드와 멀티개스트 연결을 가지는 비동기 전송망의 ABR 서비스에 대한 혼잡 제어)

  • Nho, Ji-Myong;Lim, Jong-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.629-637
    • /
    • 2000
  • Unbalance between user requirements and insufficient network resources makes a congestion. In the future since the communication networks will have very heavy traffic congestion will be more serious. The ATM networks was recommended to support the B-ISDN service for the future multimedia communication. In thie sense of congestion avoidance and recovery the ABR service category in ATM networks allows the feedback flow control mechanism to dynamically allocate the idle bandwidth of the network to users fairly and to control the network congestion rapidly In this paper we introduce a congestion control scheme using systematical approach to confirm robust stability with respect to unknown round trip delay for the network which has both unicast and multicast connections.

  • PDF

Analysis of a Wireless Transmitter Model Considering Retransmission for Real Time Traffic (재전송을 고려한 무선 전송 단에서 실시간 데이터 전송 모델의 분석)

  • Kim, Tae-Yong;Kim, Young-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.215-217
    • /
    • 2005
  • There are two types of packet loss probabilities used in both the network layer and the physical layer within the wireless transmitter such as a queueing discard probability and transmission loss probability. We analyze these loss performances in order to guarantee Quality of Service (QoS) which is the basic of the future network. The queuing loss probability is caused by a maximum allowable delay time and the transmission loss probability is caused by a wireless channel error. These two types of packet loss probabilities are not easily analyzed due to recursive feedback which, originates as a result at a queueing delay and a number of retransmission attempts. We consider a wireless transmitter to a M/D/1 queueing model. We configurate the model to have a finite-size FIFO buffer in order to analyze the real-time traffic streams. Then we present the approaches used for evaluating the loss probabilities of this M/D/1/K queueing model. To analyze the two types of probabilities which have mutual feedbacks with each other, we drive the solutions recursively. The validity and accuracy of the analysis are confirmed by the computer simulation. From the following solutions, we suggest a minimum of 'a Maximum Allowable Delay Time' for real-time traffic in order to initially guarantee the QoS. Finally, we analyze the required service rate for each type utilizing real-time traffic and we apply our valuable analysis to a N-user's wireless network in order to get the fundamental information (types of supportable real-type traffics, types of supportable QoS, supportable maximum number of users) for network design.

  • PDF

A study on the new hybrid recurrent TDNN-HMM architecture for speech recognition (음성인식을 위한 새로운 혼성 recurrent TDNN-HMM 구조에 관한 연구)

  • Jang, Chun-Seo
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.699-704
    • /
    • 2001
  • ABSTRACT In this paper, a new hybrid modular recurrent TDNN (time-delay neural network)-HMM (hidden Markov model) architecture for speech recognition has been studied. In TDNN, the recognition rate could be increased if the signal window is extended. To obtain this effect in the neural network, a high-level memory generated through a feedback within the first hidden layer of the neural network unit has been used. To increase the ability to deal with the temporal structure of phonemic features, the input layer of the network has been divided into multiple states in time sequence and has feature detector for each states. To expand the network from small recognition task to the full speech recognition system, modular construction method has been also used. Furthermore, the neural network and HMM are integrated by feeding output vectors from the neural network to HMM, and a new parameter smoothing method which can be applied to this hybrid system has been suggested.

  • PDF