• 제목/요약/키워드: Feed-forward network

검색결과 193건 처리시간 0.031초

인공신경망을 이용한 대대전투간 작전지속능력 예측 (A study on Forecasting The Operational Continuous Ability in Battalion Defensive Operations using Artificial Neural Network)

  • 심홍기;김승권
    • 지능정보연구
    • /
    • 제14권3호
    • /
    • pp.25-39
    • /
    • 2008
  • 본 연구는 인공신경망을 이용하여 대대급 방어 작전에서 임의시점에서의 작전지속능력을 예측하는 데 있다. 전투결과에 대한 수학적 모델링은 이를 위한 많은 요인들이 가지는 시?공간적 가변성으로 인해 전투력을 평가하는데 많은 문제점이 있었다. 따라서 이번 연구에서는 대대 전투지휘훈련간 각 부대의 생존률을 전방향 다층 신경망(Feed-Forward Multilayer Perceptrons, MLP)과 일반 회귀신경망(General Regression Neural Network, GRNN)모형에 적용하여 임무달성 여부를 예측하였다. 실험 결과 매개변수들의 비선형적인 관계에도 불구하고 각각 82.62%, 85.48%의 적중률을 보여 일반회귀신경망 모형이 지휘관이 상황을 인식하고 예비대 투입 우선순위 선정 등 실시간 지휘결심을 하는데 도움을 줄 수 있는 방법임을 보여준다.

  • PDF

계산주의적 시각단어재인 모델에서의 시각이웃과 음운이웃 효과 (Visual and Phonological Neighborhood Effects in Computational Visual Word Recognition Model)

  • 임희석;박기남;남기춘
    • 한국산학기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.803-809
    • /
    • 2007
  • 본 논문은 인간의 언어정보처리 과정 중 시각단어재인(visual word recognition) 과정에서 음운정보(phonological information)와 철자정보(orthography information)의 역할 및 심성어휘집의 표상(representation) 형태를 알아보기 위해 신경망(neural network)을 이용한 계산주의적 모델(computational model)을 제안한다. 제안하는 모델은 한국어 2음절을 입력 값으로 사용하는 입력층(input layer), 은닉층(hidden layer) 그리고 의미를 표현하는 출력층(output layer)으로 구성된 전방향 신경회로망(feed forward network) 구조로 설계하였다. 실험결과 계산주의적 모델은 한국어에 대한 시각 단어재인 시 보이는 언어현상 중 음운, 철자 이웃 크기효과(phonological and orthographic neighborhood effect)를 나타냈으며, 이를 통해 한국어 시각단어재인 과정에서 심성어휘집이 음운정보로 표상되어 있음을 시사하는 증거를 보였다.

  • PDF

신경망을 이용한 차선과 장애물 인식에 관한 연구 (Lane and Obstacle Recognition Using Artificial Neural Network)

  • 김명수;양성훈;이상호;이석
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.25-34
    • /
    • 1999
  • In this paper, an algorithm is presented to recognize lane and obstacles based on highway road image. The road images obtained by a video camera undergoes a pre-processing that includes filtering, edge detection, and identification of lanes. After this pre-processing, a part of image is grouped into 27 sub-windows and fed into a three-layer feed-forward neural network. The neural network is trained to indicate the road direction and the presence of absence of an obstacle. The proposed algorithm has been tested with the images different from the training images, and demonstrated its efficacy for recognizing lane and obstacles. Based on the test results, it can be said that the algorithm successfully combines the traditional image processing and the neural network principles towards a simpler and more efficient driver warning of assistance system

  • PDF

Design of hetero-hybridized feed-forward neural networks with information granules using evolutionary algorithm

  • 노석범;오성권;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.483-487
    • /
    • 2005
  • We introduce a new architecture of hetero-hybridized feed-forward neural networks composed of fuzzy set-based polynomial neural networks (FSPNN) and polynomial neural networks (PM) that are based on a genetically optimized multi-layer perceptron and develop their comprehensive design methodology involving mechanisms of genetic optimization and Information Granulation. The construction of Information Granulation based HFSPNN (IG-HFSPNN) exploits fundamental technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks, and genetic algorithms(GAs) and Information Granulation. The architecture of the resulting genetically optimized Information Granulation based HFSPNN (namely IG-gHFSPNN) results from a synergistic usage of the hybrid system generated by combining new fuzzy set based polynomial neurons (FPNs)-based Fuzzy Neural Networks(PM) with polynomial neurons (PNs)-based Polynomial Neural Networks(PM). The design of the conventional genetically optimized HFPNN exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being tuned by using Genetie Algorithms throughout the overall development process. However, the new proposed IG-HFSPNN adopts a new method called as Information Granulation to deal with Information Granules which are included in the real system, and a new type of fuzzy polynomial neuron called as fuzzy set based polynomial neuron. The performance of the IG-gHFPNN is quantified through experimentation.

  • PDF

Research on the Inter-harmonics Equivalent Impedance of Series Hybrid Active Power Filter

  • Jian-gong, Zhang;Jian-ben, Liu;Shao-jun, Dai;Qiao-fu, Chen;Jun-jia, He
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2062-2069
    • /
    • 2015
  • In the series hybrid active power filter (SHAPF) with magnetic flux compensation (MFC), the system current oscillate in the experimental results when adding the same phase harmonic current command in current control block. This condition endangers the security of the SHAPF. Taking the digit period average arithmetic as example, this paper explains the inter-harmonics current oscillation in the experiment. The conclusion is that the SHAPF is unstable to the inter-harmonics current in theory. Limited by the capacity of the inverter, the system current and the inverter output current do not increase to infinite. At last, some methods are proposed to solve this problem. From the practical viewpoint, the voltage feed-forward control is easy to achieve. It can suppress the current oscillation problems, and also improve the filtering effect. The feasibility of the methods is validated by both the emulation and experiment results.

향상된 초기화 구조를 이용한 측면주사소나 영상 초해상도 영상복원 (Side scan sonar image super-resolution using an improved initialization structure)

  • 이준엽;구본화;김완진;고한석
    • 한국음향학회지
    • /
    • 제40권2호
    • /
    • pp.121-129
    • /
    • 2021
  • 본 논문에서는 학습 기반 압축 센싱을 이용하여 측면 주사 소나 영상의 해상도를 향상하는 초해상도 기법을 다룬다. 딥러닝과 압축 센싱이 접목된 학습 기반 압축 센싱은 구조적인 측면에서 피드-포워드(feed forward) 네트워크 형태이며 학습을 통하여 파라미터들을 자동으로 설정하게 된다. 본 논문에서는 초해상도 과정에서 필요한 추가 정보들을 다양한 초기화 방법을 통해 효과적으로 추출할 수 있는 방법을 제안한다. 다양한 모의 실험에서 제안하는 방법은 기존 방식보다 Peak Signal-to-Noise Ratio(PSNR) 및 Structure Similarity Index Measure(SSIM) 지표상 향상된 성능 결과를 나타내었다.

An Artificial Neural Networks Application for the Automatic Detection of Severity of Stator Inter Coil Fault in Three Phase Induction Motor

  • Rajamany, Gayatridevi;Srinivasan, Sekar
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2219-2226
    • /
    • 2017
  • This paper deals with artificial neural network approach for automatic detection of severity level of stator winding fault in induction motor. The problem is faced through modelling and simulation of induction motor with inter coil shorting in stator winding. The sum of the absolute values of difference in the peak values of phase currents from each half cycle has been chosen as the main input to the classifier. Sample values from workspace of Simulink model, which are verified with experiment setup practically, have been imported to neural network architecture. Consideration of a single input extracted from time domain simplifies and advances the fault detection technique. The output of the feed forward back propagation neural network classifies the short circuit fault level of the stator winding.

제어구조 변경과 신경망 보정에 의한 적응제어에 관한 연구 (A Research on the Adaptive Control by the Modification of Control Structure and Neural Network Compensation)

  • 김윤상;이종수;최경삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.812-814
    • /
    • 1999
  • In this paper, we propose a new control algorithm based on the neural network(NN) feedback compensation with a desired trajectory modification. The proposed algorithm decreases trajectory errors by a feed-forward desired torque combined with a neural network feedback torque component. And, to robustly control the tracking error, we modified the desired trajectory by variable structure concept smoothed by a fuzzy logic. For the numerical simulation, a 2-link robot manipulator model was assumed. To simulate the disturbance due to the modelling uncertainty. As a result of this simulation, the proposed method shows better trajectory tracking performance compared with the CTM and decreases the chattering in control inputs.

  • PDF

신경회로망을 이용한 불량 Data 처리에 관한 연구 (A Study for Bad Data Processing by a Neural Network)

  • 김익현;박종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.186-190
    • /
    • 1989
  • A Study for Bad Data Processing in state estimation by a Neural Network is presented. State estimation is the process of assigning a value to an unknown system state variable based on measurement from that system according to some criteria. In this case, the ability to detect and identify bad measurements is extremely valuable, and much time in oder to achieve the state estimation is needed. This paper proposed new bad data processing using Neural Network in order to settle it. The concept of neural net is a parallel distributed processing. In this paper, EBP (Error Back Propagation) algorithm based on three layered feed forward network is used.

  • PDF

센서퓨젼 기반의 인공신경망을 이용한 드릴 마모 모니터링 (Sensor Fusion and Neural Network Analysis for Drill-Wear Monitoring)

  • ;권오양
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.77-85
    • /
    • 2008
  • The objective of the study is to construct a sensor fusion system for tool-condition monitoring (TCM) that will lead to a more efficient and economical drill usage. Drill-wear monitoring has an important attribute in the automatic machining processes as it can help preventing the damage of tools and workpieces, and optimizing the drill usage. In this study, we present the architectures of a multi-layer feed-forward neural network with Levenberg-Marquardt training algorithm based on sensor fusion for the monitoring of drill-wear condition. The input features to the neural networks were extracted from AE, vibration and current signals using the wavelet packet transform (WPT) analysis. Training and testing were performed at a moderate range of cutting conditions in the dry drilling of steel plates. The results show good performance in drill- wear monitoring by the proposed method of sensor fusion and neural network analysis.