• Title/Summary/Keyword: Feed-angle

Search Result 255, Processing Time 0.025 seconds

Influence of Working Conditions on the Spinnability of Cylindrical Cups of Aluminum Sheet Metal (알루미늄 원통컵의 스피닝 성형성에 영향미치는 작업조건 연구)

  • 김종호;박규호;나경환;김승수
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.465-470
    • /
    • 1999
  • Many researchers have, nowadays, studied on spinning which can produce highly qualified products by CNC spinning machine equipped with hydraulic devices. The products have continuous metal flow which improves fatigue life, yield point, tensile strength and hardness. This study is to investigate the influence of various working conditions on the spinnability of cylindrical cups such as feed rate(ν), feed pitch(p), angle of roller holder(α), and the inclination angle of first roller path. Through experiments the feed rate of (0.4∼0.7) mm/rev was shown to give the drawing ratio of 2.5 when the angle of roller holder was 5°, However, by increasing the angle of roller holder from 5°to 20°, the range of feed rate which can produce deeper cups became wider and the spinnability was also improved. The optimum working conditions, for the maximum formability of aluminum sheet metal as well as dimensional accuracy of spun cups, are presented and discussed.

  • PDF

Estimation of Feed Drive Inclination Angle Using Feed Motor Current (이송모터 전류 신호를 이용한 공작기계 이송계의 기울어짐 각도 추정에 관한 연구)

  • Jeong Y.H.;Min B.K.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.781-784
    • /
    • 2005
  • The feed drive inclination significantly influences product quality, machine tool accuracy and life time. However, the accurate measurement of the inclination needs the skilled engineers and the accurate leveling instruments such as spirits or electric levels. In this study a novel methodology for the estimation of inclination angle of machine tool feed drive is proposed. The proposed methodology utilizes the motor current signals and a new mathematical model of machine tool feed drive considering inclination. The experiment results showed that the proposed method successfully estimates the inclination angle, as well as newly proposed model also enhances the accuracy of the machine tool feed drive model by introducing the inclination effects.

  • PDF

Study on the Burr Formation in Drilling a Thick Plate (후판의 Drill가공에 있어서 Burr의 생성에 관한 연구)

  • Choe, Seong-Kyu;Yang, Gyun-Eui;Kim, Tae-Yeong;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.3
    • /
    • pp.30-39
    • /
    • 1986
  • The burr worsens the accuracy of a workpiece and decreases a lot of pro- ductivity because it takes so much time and efforts to remove it. In this paper, the height, thickness and size of a drilling burr were derived from the drilling variables of drill diameter, chisel edge angle, web rate =($\Frac{2{\times}\;web\;thickness}{drill\;dia}$) and yielding stress of the workpiece as wel as feed, point angle and helix angle. The theoretical and experimental values of drilling thrust, torque and burr size of the testpiece were analyzed with the method of numerical analysis in a standard drilling condition. The order of choosing the drilling variables for the purpose of controlling the burr size was dealt in this paper with burr forming ratio. The results are as follows: (1) The drill diameter forms 42 percents feed 25 percents point angle 23 percents and web rate, chisel edge angle and gelix angle 5 percents of the partial differential slope of drilling thrust within the usual available ranges of drilling variables. (2) The drill diameter forms 55 percents feed 26 percents web rate 9 percents and chisel edge angle, point angle and helix angle 10 percents of the par- tial differential slope of drilling torque in the usual available ranges of drilling variables. (3) About 70 percents of the burr size can be controlled by feed, 29 percents by web rate in the case of a fixed diameter. It is recommended drilling10 variables to be chosen in the order of feed, web rate, drill diameter, point angle, chisel edge angle and helix angle so as to control the burr size effectively.

  • PDF

Effect of Cutting Condition on the Tool Wear in Turning of the Presintered Low Purity Alumina Ceramics (저순도 알루미나 세라믹 예비소결체의 선삭에서 공구 마멸에 미치는 절삭 조건의 영향)

  • Lee, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.14-21
    • /
    • 2010
  • In this study, presintered low purity alumina ceramics were machined with various tools to clarify the effects of the tool material, cutting condition and tool geometry on machinability. The main conclusions obtained were as follows. (a)The wear of tungsten carbide tool becomes smaller with the increase of the feed and clearance angle, and with the decrease of rake angle, especially exhibiting considerably smaller wear with both the decrease of rake angle and the increase of clearance angle. (b) So far as turning the ceramic presintered at low temperature, the diamond tool shows the best performance with higher feed. (c) The effect on the tool wear of the feed, clearance angle and rake angle becomes smaller in turning the ceramic presintered at higher temperature. (d) The tool wear is not severely affected by the depth of cut.

A Basic Study on the Surface Roughness in Turning Process Considering Taper Angle Variation (선삭공정의 각도변화가 표면거칠기에 미치는 영향에 관한 기초 연구)

  • Kim, Dong-Hyeon;Choi, Jun-Young;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.16-21
    • /
    • 2011
  • In machining operation, the quality of surface finish is an important factor for many turned products. In this paper, surface quality in turning machining considering angle variation has been investigated. To reach this goal, surface quality turning experiments are carried out according to cutting conditions with angle variation. The variable cutting conditions are cutting speed, feed rate and taper angle of workpiece. The surface roughness was measured and the effects of cutting conditions were analyzed by the method of analysis of variance (ANOVA). From the experimental results and ANOVA, it is found that a better surface roughness can be obtained as decreasing feed rate, increasing cutting speed. Taper angle variation has been more influenced by feed rate and cutting speed.

A study on the cutting character of soft materials(Cu alloy and Al alloy) with change of tool rake angles (공구 경사각의 변화에 따른 연질 재료(Cu alloy and Al alloy)의 절삭 특성에 관한 연구)

  • 염성하;현청남;오재응
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.85-96
    • /
    • 1988
  • The optimum cutting condition for rake angle in turning was investigated in (6-4) Brass and Al alloy. Results of experiments in (6-4) Brass and Al alloy are as follow. Specific cutting resistance becames higher as the depth of cutting, feed or cutting velocity decreases at same rake angle and resistance appear low value 20.deg., 25.deg.(6-4)brass, 0.deg. 20.deg.(Al alloy). The optimum cutting condition for(6-4) Brass is depth of cutting 0.5mm, rake angle 25.deg., cutting velocity 80m/min, feed 0.1mm/rev and for Al alloy is depth of cutting 0.1mm, rake angle 0.deg., cutting velocity 200m/min, feed 0.5mm/rev. The rake angle for good roughness is 20.deg. at (6-4) Brass, and that for Al alloy is 15.deg. The roughness is influenced by feed and it has the lowest value at 0.1mm/rev and the cutting condition is influenced by rake angle only.

  • PDF

Modeling of flexible disk grinding process for automation of hand-grinding (수동연삭공정 자동화를 위한 유연성 디스크가공 모델링)

  • Yoo, Song-Min;Kim, Young-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.376-383
    • /
    • 2000
  • A flexible disk grinding process model has been implemented with varying disk orientation with respect to workpiece surface along with variable feed rate. Before implementing arbitrary disk orientation and translation, disk angle and feed rate variation have been implemented. The disk angle was changed with constant angular velocity only in the entrance stage. The effect of the variable feed rate was added to the geometric schematic. The feed rate was changed either from the entrance stage or from the between edges stage and process performance was evaluated. Effect of changing both angle end feed rate has been also analyzed. Disk trend showing actual disk deflection has also been visualized.

  • PDF

Shape Design and Prediction of Efficiency of Sedimentation Bed using Three-Dimensional Flow Analysis (삼차원 유동해석을 통한 침전조의 침전효율 예측 및 형상설계)

  • Cui Xiang-Zhe;Kim Hong-Min;Kim Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.95-98
    • /
    • 2002
  • Three-dimensional flow analyses for two different ratios of radius to height of sedimentation bed are implemented to evaluate the effect of blockage ratio of center feed wall and angle of distributor on sedimentation efficiency, and to find the optimal value of those parameters. Sedimentation efficiencies for three different shapes are compared with and without rotation speed. And then, five different combinations of blockage ratio of center feed wall and angle of distributor are compared It reveals that the effect of blockage ratio of center fled wall and angle of distributor is considerable to sedimentation efficiency while rotation effect can be neglected and $0.55 and 33^{\circ}$for blockage ratio of center food wall and angle of distributor, respectively, ive the best sedimentation efficiency.

  • PDF

Cutting Performance of a Developed Small-angle Spindle Tool (소형 앵글 스핀들 공구의 절삭성능에 관한 연구)

  • Kim, Jin Su;Kim, Yohng Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2016
  • The cutting performance of a developed small-angle spindle tool was investigated with Al6061 using a TiAlN coated high-speed steel end mill. Up-cut and down-cut processes in a milling machine were carried out at the range of 1000-4000 rpm for spindle speed and 50-300 mm/min for feed rate. As a result, the highest cutting force in the Fx direction was obtained from the up-cut process when the spindle speed was 1000 rpm and the feed rate was 100 mm/min. In the Fy direction, the highest cutting force appeared in the up-cut process at a feed rate of 250 mm/min at the same spindle speed. Conversely, the lowest cutting force came out in the up-cut process at a spindle speed of 4000 rpm and a feed rate of 50 mm/min. As for surface finish, the finest surface roughness was obtained as Ra 0.7642 um at a spindle speed of 4000 rpm and a feed rate of 50 mm/min. Consequently, given the cutting performance of the developed small-angle spindle tool, we conclude that its use in industrial practice is feasible.

The Effect of Drill Helix Angle, Point angle, and Cutting Conditions on the Drilling Performance (드릴의 선단각, 나선각 및 가공조건이 가공성에 미치는 영향)

  • 이영식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.138-146
    • /
    • 1997
  • The optimal drill helix angle, point angle, and cutting conditions are recommended in the study so as to maximize the drilling performance by investigating the experimental reaults concerning with the state of chip formation, roundness of machined holes, and geometry of projected burr at hole exit, which are examined under the conditions of various helix angles, drill point angles of twist drill, cutting speeds, and feeds in operional parameters. In the easiness of chip escape, the helical type of chip is producted when a helix angle is 30$^{\circ}$, drill point angle 118$^{\circ}$, 140$^{\circ}$and feed is st between 0.1 and 0.15mm/rev. Roundness of machined hole is improved when the helix angle is 37$^{\circ}$, drill point angle is 118$^{\circ}$, and feed is 0.15mm/rev. The height of projected burr at the button of machined hole increases when the drill point angle and helix angle becomes large.

  • PDF