• 제목/요약/키워드: Feed speed

검색결과 911건 처리시간 0.028초

Development of Automatic Chicken Cutting Machine

  • Woo, Duk Gam;Kim, Yeong Jin;Lim, Hack kyu;Kim, Tae Han
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.386-393
    • /
    • 2018
  • Purpose: Chicken cutting is done manually, which is inefficient, unhygienic, and carries a high accident risk during processing. This study develops and evaluates an automatic chicken cutting machine that suits small-scale workplaces. Methods: This study developed an automatic chicken cutting machine equipped with four traverse blades and two longitudinal blades. An experiment was conducted with various blade rotating speeds and tray feed rates to evaluate the machine's performance. The chicken loss rate and chicken piece weights were measured to calculate the coefficient of variation (CV), thereby determining processing uniformity. Results: The optimal cutting conditions with the smallest chicken loss rate were 0.05 m/s tray feed speed and 18.8 m/s and 16.4 m/s for the traverse and longitudinal blades, respectively. The processing ran at 55.3 chickens per hour and the chicken pieces were more uniform when using the device than for hand-work processed pieces. Conclusions: The loss rate increased in proportion to the cutting-blade rotation speed due to the high cutting rate in meat. The loss rate also increased as the tray feed speed slowed because the cutting blade pushed the chicken meat. The tray feed speed should be increased to improve the amount processed per hour.

STS 304 배관재의 드릴가공시 공구마모에 관한 연구 (A Study on Tool Wear in Drilling STS 304 Steel Pipe Material)

  • 문상돈
    • 동력기계공학회지
    • /
    • 제5권3호
    • /
    • pp.73-79
    • /
    • 2001
  • The purpose of this investigation is experimentally to clarify the machinability and tool wear of STS 304 steel pipe material for piping. In order to determine the effects of cutting parameters and tool wear on thrust, torque, AE RMS, drilling is conducted on CNC milling machine. In this experiment, it is measured that thrust, torque, tool wear length, tool wear area and AE RMS during drilling using Hss tool. It has been found that a) During the drilling, the thrust and the torque of the STS 304 pipe are received more the effect of the feed than the spindle speed and the thrust increase with the increase of feed, b) The value of the AE RMS is been larger the effect of the cutting speed than the feed rate, and the value of the AE RMS increase with the increase of spindle speed, c) It has been found that the suitable feed in feed condition of 0.03, 0.05, 0.1, 0.15mm/rev is below 0.05mm/rev, d) The value of the AE RMS was shown a characteristic of the jump value during it was a sudden inrcrease of the tool wear. The increased character of the AE RMS value can be known an effective factor of the tool wear detection, and e) It can be quantitatively evaluated the condition of the tool according to calculate a area of the drill wear image which is obtained by a vision system.

  • PDF

고속 이송방식 Laser Cutting M/C의 성능 및 신뢰성 평가에 관한 연구 (A Study on Performance and Reliability Test of High Speed Feeding Type Laser Cutting M/C)

  • 이춘만;임상헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1007-1010
    • /
    • 2002
  • The accuracy of high speed feeding type laser cutting M/C is the major factor directly concerned with the accuracy of the processed work, and the feed errors of feed system make the machining errors of work directly on processing. In this point, this study focused on the generative elements in feed errors of laser cutting M/C when operating its laser head. In order to improve the accuracy of this machining center, feed errors are measured by a laser interferometer.

  • PDF

유연성 디스크 정밀연삭 가공중 평면가공에 관한 연구 (A Study on the Flat Surface Generation Using Flexible Disk Grinding)

  • 유송민
    • 한국정밀공학회지
    • /
    • 제13권7호
    • /
    • pp.158-166
    • /
    • 1996
  • In this study, a flexible disk grinding process is applied in order to produce high precision product. A new model was developed considering feed motion along horizontal and vertical direction. Different types of feed speed variation was tested with respect to distinct process stages in order to achieve flat surface. It was observed that highest order polynomial form for both horizontal and vertical feed speed variation among the proposed categories produced surface close to flat one. Disk deflection trend during the process was visualized confirming the proposed scheme. Cutting force and VRR(volume removal rate) was observed as an aid to process planning.

  • PDF

SCM415강에 대한 캄드릴링 특성연구 (A Study on the Characteristics of Chamdrilling for SCM415 Steel)

  • 김진수
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.27-34
    • /
    • 2021
  • This study analyzes machining characteristics and presents optimal cutting conditions by measuring the surface roughness, dimensional accuracy, and dimension straightness based on the feed rate after processing the inner diameter hall of SCM415 steel using an automatic CNC(Computerized Numerical Control) lathe. The testing material was cut using an 11.8 mm-diameter Chamdrill after mounting the 32 mm-diameter round bar on an automatic CNC lathe. The cut depth was set at 3 mm, and the cutting speed was fixed at 1500 rpm. The surface roughness, dimensional accuracy, and dimension straightness of 15 testings were measured by changing the feed rate to 0.05, 0.1, and 0.15 mm/rev, respectively. It was difficult to process more than 15 tests during the maching due to noise or break. Additionally, the optimum cutting of SCM415 steel showed excellent surface roughness in the 10th and 11th of testing at cutting speed and feed speed of 1500 rpm and 0.05 mm/rev, respectively. The dimensional accuracy was measured in three dimensions after drilling, which showed good results with an average range of 0.0138-0.0208 mm. Moreover, the lower the feed speed, the higher the accuracy. Additionally, the measurement results of the dimensional straightness showed that the straightness is the straightness was the best at the 1th and 2th cutting regardless of the feed speed.

V-벨트 무단변속기(無斷變速機)를 이용(利用)한 자탈형(自脫型) 콤바인의 주행속도(走行速度) 제어(制御)(I) (A Forward Speed Control of Head-feed Combine Using Continuously Variable V-belt Transmission -Combine Load Characteristics-)

  • 최규홍;유관희;조영길;박판규
    • Journal of Biosystems Engineering
    • /
    • 제16권2호
    • /
    • pp.124-132
    • /
    • 1991
  • This study was carried out to obtain the information needed in the development of forward speed control system and the improvement of combine performance. The effects of variety, grain moisture content and forward speed on the combine load characteristics were investigated through experiments. The results of this study are summarized as follows. 1. A data acquisition system was developed to measure the engine speed and the torques and speeds of the threshing cylinder, dean-grain auger and tailings-return auger. The system consisted of transducers, signal conditioner, interface board and microcomputer. The system accuracy is better than ${\pm}2.3%$ full scale. 2. Linear regression equations were obtained for the torque, speed and power requirement of threshing cylinder for different paddy varieties, grain moisture contents and feed rates. 3. The maximum value of relative frequency for threshing cylinder torque decreased as the increase in feed rate and moisture content. The range of torque fluctuation was 1.2~3.7 and 1.2~1.9 times the average and maximum torque, respectively. The maximum value of power spectrum density (PSD) appeared to be about 11 Hz regardless of paddy variety, grain moisture content and feed rate. 4. The speed of tailings return thrower decreased rapidly at below 900rpm, and it fell to near zero about 3 seconds after that time. When the travelling of combine harvester was stopped immediately after sensing the overload, it took about 7 seconds for a full recovery of the no-load speed of tailings return thrower.

  • PDF

STD11 금형강의 고속가공에서 가공정밀도 향상에 관한 연구 (A Study on the Improvement of Machining Accuracy in High Speed Machining of STD11)

  • 이춘만;최치혁;정원지;정종윤;고태조;김태형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.329-334
    • /
    • 2002
  • High-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate, spindle revolution and cutting force are control factors. The effect of the control factors on machining accuracy is discussed for the results of surface roughness and machining error in Z-direction for the high speed machining of STD11.

  • PDF

공급률 및 탈곡통 길이 변화에 따른 자탈형 콤바인 탈곡 성능 (Threshing Performance dependent upon Feed Rate and Threshing Drum Length for Head-Feed Combine)

  • 서신원;이상우;허윤근
    • 농업과학연구
    • /
    • 제33권2호
    • /
    • pp.159-166
    • /
    • 2006
  • Threshing loss was increased due to dropping of the threshing efficiency when the 4 row head-feed combine harvested 5 row rice to improve harvesting performance of a combine. Reasonable design criteria were examined to determine the ranges of both of feed rate and the length of threshing drum for the 4 row head-feed combine being used as a 5-row combine. Harvesting performance increased as working width or working speed increased, it resulted in 15% increase when the working width increased from 4 row to 5 row. Harvesting operations of the 4 row combine performed normally in the 4 row rice in threshing loss less than 1%, however, threshing loss increased to 2.25% in the 5 row due to poor threshing efficiency. The length of threshing drum was increased from 710 mm to 810 mm as well as the speed of crop feed chain was increased from 0.61 m/s to 0.75 m/s so as to improve the poor threshing efficiency resulted from the enlarged working width from the 4 row to the 5 row, which would decrease threshing loss less than 1%.

  • PDF

선삭시 절삭조건이 표면거칠기에 미치는 영향 분석 (Effects of Cutting Conditions on Surface Roughness in Turning)

  • 이신영;김홍남
    • 한국정밀공학회지
    • /
    • 제18권8호
    • /
    • pp.139-149
    • /
    • 2001
  • The effects of the cutting conditions on the surface roughness of workpiece in turning were studied in this paper. The workpieces made of carbon steel SM20C and SM45C were tamed without the support of the tailstock center. Cutting conditions were changed in three or flour steps in each parameter and cutting fluid was used. The surface roughness results of tests were measured and the effects of the cutting conditions were analyzed by the method of analysis of variance. The summary of the experimental research is as follows. The main parameters were cutting speed, fred-rate, depth of cut, and the interactions between speed and fled-rate, speed and depth of cut, and fred and depth of cut. As cutting speed increased, surface roughness showed lower value. The surface roughnesses of feed-rate 0.102 mm/rev and 0.147 mm/rev were better than those of feed-rate 0.05 mm/rev and 0.2 mm/rev.

  • PDF

Improvement of Surface Integrity in Hard Turning With Sensitivity Analysis of Cutting Parameter

  • Kong, Jeong-Heung;Park, Man-Jin;Kim, Jin-Hyun;Jang, Dong-Young;Han, Dong-Chul
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.321-322
    • /
    • 2002
  • This paper presents study of effects of cutting parameters such as cutting speed, feed rate and depth of cut on the surface roughness in hard turning. Taguchi Method and linear regression model of design parameters were utilized to identify the controlling process parameters that can monitor the surface roughness in the hard turning operation. In the process optimization, experimental planning was performed using the orthogonal array and concept of the signal-to-noise ratio. Cutting parameters such as speed, feed rate, and depth of cut were selected as process parameters and the ANOVA analysis showed that feed rate and cutting speed had more effect on the roughness variation that depth of cut.

  • PDF