• Title/Summary/Keyword: Feed motor current

Search Result 47, Processing Time 0.028 seconds

Cutting process monitoring system development for E-manufacturing (E-manufacturing을 위한 가공공정 모니터링 시스템 개발)

  • 신봉철;윤길상;최진화;김동우;조명우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.30-35
    • /
    • 2003
  • Recently, with the rapid growth of information technology, many studies have been performed to implement web-based manufacturing system. Such technologies are expected to meet the need of many manufacturing industries those want to adopt E-manufacturing system for the construction of globalization, agility, digitalization to cope with the rapid changing market requirements. In this research, areal-time web-based machine tool and machining process monitoring system is developed as a first step fur implementing I-manufacturing system. In this system, main spindle motor current and feed current are measured using hall sensors. And the relationship between the cutting force and the spindle motor RMS current at various spindle rotational speed is obtained. Also, a rule-based expert system is developed in order to monitor the machining process effectively. Finally, developed system is applied to real machining process to verify the effectiveness.

  • PDF

The Design of an Automatic System for Dairy Cattle Breeding I - The Choice of Temperature Sensor for Body Temperature Measuring - (낙농의 자동화 시스템 구성 I - 체온 감지 온도센서의 선정 -)

  • 김형주;정길도;한병성;김용준;김동원;김명순
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.83-90
    • /
    • 1998
  • In this paper the automatic system for dairy cattle has been desisted such as body temperature measuring unit, feed supplying unit and temperature control unit. Since e disease is strongly related to the body temperature of cattle, early detection of the abnormal temperature would prevent the severe problems which nay occur in dairy farms. An electronic component AD590J is used as temperature sensor for the system, The device is highly robust against the noise since the output signal is the current so it can be applied to a long distance sensing The resolution of signal is 0.1$^{\circ}C$ and the current is 10㎷ Also 12-bit A/D converter is desisted fir interfacing the sensor with a one-chip microprocessor. A temperature measuring experiment using the developed system has been done for measuring the temperature of human beings and the system was proven to be useful for measuring the body temperature of dairy cattle properly. A geared AC motor is used for the feed supplying unit The heater and fm are used as temperature control unit. The feed supplying unit and temperature control unit are well operating in the laboratory experiment.

  • PDF

A study on the Development of Micro Hole Drilling Machine and its Mechanism (미소경 드릴링 머신의 개발과 절삭현상의 연구)

  • Paik, In-Hwan;Chung, Woo-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.22-28
    • /
    • 1995
  • Micro Drills have found ever wider application. However micro drilling is a machining to integrate the difficult machinablities such as tool stiffness, position control and revolution accuracy, and is known to cost and time consuming. So, this study aimed to practice ultraminiature drilling(0.05 .phi. ) wiht simple component, if possible. System is developed as the three modules : feed drives, spindle and monitoring part. The dynamics of measured current signals from the spindle of Micro Hole Drilling machine are investigated to establish the criteria of stepfeed mechanism. Cutting experiments identify the relationship of spindle rpm, feed rate and tool life. The smaller drill diameter is, the more suitable cutting condition have to be selected because of chip packing.

  • PDF

Implementation of the BLDC Motor Drive System using PFC converter and DTC (PFC 컨버터와 DTC를 이용한 BLDC 모터의 구동 시스템 구현)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.62-70
    • /
    • 2007
  • In this paper, the boost Power Factor Correction(PFC) technique for Direct Torque Control(DTC) of brushless DC motor drive in the constant torque region is implemented on a TMS320F2812DSP. Unlike conventional six-step PWM current control, by properly selecting the inverter voltage space vectors of the two-phase conduction mode from a simple look-up table at a predefined sampling time, the desired quasi-square wave current is obtained, therefore a much faster torque response is achieved compared to conventional current control. Furthermore, to eliminate the low-frequency torque oscillations caused by the non-ideal trapezoidal shape of the actual back-EMF waveform of the BLDC motor, a pre-stored back-EMF versus position look-up table is designed. The duty cycle of the boost converter is determined by a control algorithm based on the input voltage, output voltage which is the dc-link of the BLDC motor drive, and inductor current using average current control method with input voltage feed-forward compensation during each sampling period of the drive system. With the emergence of high-speed digital signal processors(DSPs), both PFC and simple DTC algorithms can be executed during a single sampling period of the BLDC motor drive. In the proposed method, since no PWM algorithm is required for DTC or BLDC motor drive, only one PWM output for the boost converter with 80 kHz switching frequency is used in a TMS320F2812 DSP. The validity and effectiveness of the proposed DTC of BLDC motor drive scheme with PFC are verified through the experimental results. The test results verify that the proposed PFC for DTC of BLDC motor drive improves power factor considerably from 0.77 to as close as 0.9997 with and without load conditions.

An RMRAC Controller for Permanent Magnet Synchronous Motor Based On Modified Current Dynamics (보정된 전류동역학에 기반한 영구자석 전동기의 참조모델 강인적응제어기)

  • Jin, Hong-Zhe;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.991-997
    • /
    • 2008
  • A new RMRAC scheme far the PMSM current regulation is proposed in a synchronous frame, which is completely free from the parameter's uncertainty. A current regulator of PMSM is the inner most loop of electromechanical driving systems and plays a foundation role in the control hierarchy. When the PMSM runs in high speed, the cross-coupling terms must be compensated precisely for large system BW. In the proposed RMRAC, the input signal is composed of a calculated voltage defined by MRAC law and an output of the disturbance compensator. The gains of feed forward and feedback controller are estimated by the proposed modified gradient method, where the system disturbances are assumed as filtered current regulation errors. After the compensation of the system disturbance from error information, the corresponding voltage is fed forward to control input to compensate for real disturbances. The proposed method robustly compensates the system disturbance and cross-coupling terms. It also shows a good realtime performance due to the simplicity of control structure. Through real experiments, the efficiency of the proposed method is verified.

The Torque-current Observer Design for Speed.Torque Control of DC Motor (직류 전동기 속도.토크 제어에 대한 토크전류 관측기 설계)

  • Kim, Eun-Gi;Kim, Yong-Ju;Seo, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1091-1093
    • /
    • 2002
  • In this paper, the load torque observer is designed for speed and torque control of DC motor. Load torque is very sensitive to the variation and disturbance of the input parameters. The proposed system can accurately estimate the instantaneous speed even at the low speed range by using the load torque observer based on the torque component of DC motor. The system becomes robust against disturbances using a feed-forward control of the load torque estimated automatically at the speed observer.

  • PDF

Development of Linear motor diver for high speed and stiffness feed system (고속 고강성 이송시스템을 위한 리니어 모터 드라이브 개발)

  • 최정원;김상은;이기동;박정일;이석규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.167-169
    • /
    • 2001
  • In this paper, a controller design for high speed and stiffness linear motor is implemented. The designed controller is mainly composed of speed and current controller, which are carried out by the high-speed digital signal processor(DSP). In addition the PWM inverter is controlled by space voltage PWM method. This system is implemented by using 32-bit DSP(TMS320C31), a high-integrated logic device(EPM7128), and IPM(Intelligent Power Module) for compact and powerful system design. The experimental results show the effective performance of controller for high speed and stiffness linear motor.

  • PDF

Performance Enhancement of RMRAC Controller for Permanent Magnent Synchronous Motor using Disturbance compensator (외란보상기를 이용한 영구자석 동기전동기에 대한 참조모델 견실적응제어기의 성능개선)

  • Jin, Hong-Zhe;Lim, Hoon;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.845-851
    • /
    • 2008
  • A simple RMRAC (Robust Model Reference Adaptive Control) scheme for the PMSM (Permanent Magnent Synchronous Motor) is proposed in the synchronous frame. A current control of PMSM is the most inner loop of electro-mechanical driving systems and it requires a fast and simple control law to play a foundation role in the control hierarchy. In the proposed synchronous current model, the input signal is composed of a calculated voltage by proposed adaptive laws and real system disturbance. The gains of feed-forward and feedback controllers are estimated by the proposed modified Gradient method respectively, where the system disturbances are assumed as filtered current tracking errors. After the estimation of the system disturbances from the tracking errors, the corresponding voltage is fed forward to control input voltage to compensate for the disturbances. The proposed method is robust against high frequency disturbance and has a fast dynamic response. It also shows a good real-time performance due to it's simplicity of control structure. Through the simulations and real experiments, efficiency of the proposed method is verified.

Indirect Cutting Force Measurement by Using Servodrive Current Sensing and it's Application to Monitoring and Control of Machining Process (이송모터 전류 감지를 통한 절삭력의 간접측정과 절삭공정 감시 및 제어에의 응용)

  • Kim, Tae-Yong;Choi, Deok-Ki;Chu, Chong-Nam;Kim, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.133-145
    • /
    • 1996
  • This paper presents an indirect cutting force measuring system, which uses the current signals from the AC servo drive units of the horizontal machining center, with its applications to the adaptive regulation of the cutting forces in various milling processes and to the on-line monitoring of tool breakage. A typical model for the feed-drive control system of a horizontal machining center is developed to analyze cutting force measurement from the drive motor. The pulsating milling forces can be measured indirectly within the bandwidth of the current feedback control loop of the feed-drive system. It is shown that the indirectly measured cutting force signals can be used in the adaptive controller for cutting force regulation. The whole scheme has been embedded in the commercial machining center and a series of cutting experiments on the face cutting processes are performed. The adaptive controller reveals reliable cutting force regulating capability against the various cutting conditions. It is also shown that the tool breakage in milling can be detected within one spindle revolution by adaptively filtering the current signals. The effect of the cutter run-out has been considered for the reliable on-line detection of tool breakage.

  • PDF

A experimental study on the detection of the signals which are the new and worn end mills working in the machining center (엔드밀의 마모와 신호변화에 관한 실험적 연구)

  • 이창희;조택동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.975-979
    • /
    • 2002
  • This paper studies the indirect parameters when the new and worn end mill working in the machining center. The parameter output methods are cutting force, current values and AE signals. In the result, when the worn end mill operating, cutting forces increase the 14.71〔N〕, current values increase the 2.917〔A〕 and 1.168〔A〕 according to the spindle mote. and feed motor, and AE signals increase the 0.588$\times$10$^{-5}$ 〔A〕. We can use these parameters in the detection of end mill wear.

  • PDF