• Title/Summary/Keyword: Feed mechanism

Search Result 292, Processing Time 0.041 seconds

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

Application of Electrical Linear Motors to Machine Tools (전기선형모터의 공작기계에의 적용)

  • 은인웅;정원지;이춘만;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.450-453
    • /
    • 2001
  • Linear motor is characterized by its high velocity, high acceleration and good positioning accuracy. In recent years, linear motor is often used as a fast feed mechanism for high-speed machine tools. For the effective application of linear motors to machine tools, many demands on machine conceptions must be fulfilled. In this paper, some important construction concepts such as bending deformation of machine table, frictional force on the linear guidance and thermal behavior of linear motors are presented.

  • PDF

A Study on Algorithm of Checking Errors in Assembly Process of Feed Drive system in NC Machine Tools (NC공작기계 이송기구의 조립시 발생하는 결함의 발견)

  • Park, Jong-Bong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.141-147
    • /
    • 2001
  • This paper presents a developing algorithm of checking errors of feed mechanism in the NC machine tool with DAC method. It is useful to check static and dynamic rigidity with relation between lost motion and current of rotor. For checking error of feed in assembly tuning with machining center proposed checking algorithm is useful.

  • PDF

Effects of Insulation Layer upon the Thermal Behavior of Linear Motors

  • Eun, In-Ung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.896-905
    • /
    • 2003
  • A linear motor has many advantages next to conventional feed mechanisms: high transitional speed and acceleration, high control performance, and good positioning accuracy at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has a long lifetime, and is easy to assemble. A disadvantage of the linear motor is low efficiency and resultant high-temperature rise in itself and neighboring structures during operation. This paper presents the thermal behavior of the linear motor as a feed mechanism in machine tools. To improve the thermal behavior, an insulation layer is used. By placing the insulation layer between the primary part and the machine table, both the temperature difference and the temperature fluctuation in the machine table due to a varying motor load are reduced.

Comparison between Asynchronous and Synchronous Linear Motors as to Thermal Behavior

  • Eun, In-Ung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.61-68
    • /
    • 2001
  • A linear motor has a lot of advantages in comparison with conventional feed mechanisms: high transitional speed, acceleration, high control performance and good positioning at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has along lifetime and is easy to assemble. Recently, the two types of linear motors, asynchronous and synchronous linear motors, are often applied to machine tools as a fast feed mechanism. In this paper, a comparison between the two types of linear motors as to power loss and thermal behavior is made. The heat sources of the linear motor-the electrical power loss in the motor and the frictional heat on the linear guidance-are measured and compared. Also, the temperature on the linear motor and machine structure is measured and presented.

  • PDF

Design of Small CRPA Arrays with Circular Microstrip Loops for Electromagnetically Coupled Feed

  • Hur, Jun;Byun, Gangil;Choo, Hosung
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.129-135
    • /
    • 2018
  • This paper proposes a design of small controlled reception pattern antenna (CRPA) arrays using circular microstrip loops with frequency-insensitive characteristics. The proposed array consists of seven identical upper and lower circular loops that are electromagnetically coupled, which results in a frequency-insensitive behavior. To demonstrate the feasibility of the proposed feeding mechanism, the proposed array is fabricated, and its antenna characteristics are measured in a full-anechoic chamber. The operating principle of the proposed feeding mechanism is then interpreted using an equivalent circuit model, and the effectiveness of the circular loop shape is demonstrated by calculating near electromagnetic fields in proximity to the radiator. The results confirm that the proposed feeding mechanism is suitable to have frequency-insensitive behavior and induces strong electric and magnetic field strengths for higher radiation gain in extremely small antenna arrays.

A study on the Development of Micro Hole Drilling Machine and its Mechanism (미소경 드릴링 머신의 개발과 절삭현상의 연구)

  • Paik, In-Hwan;Chung, Woo-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.22-28
    • /
    • 1995
  • Micro Drills have found ever wider application. However micro drilling is a machining to integrate the difficult machinablities such as tool stiffness, position control and revolution accuracy, and is known to cost and time consuming. So, this study aimed to practice ultraminiature drilling(0.05 .phi. ) wiht simple component, if possible. System is developed as the three modules : feed drives, spindle and monitoring part. The dynamics of measured current signals from the spindle of Micro Hole Drilling machine are investigated to establish the criteria of stepfeed mechanism. Cutting experiments identify the relationship of spindle rpm, feed rate and tool life. The smaller drill diameter is, the more suitable cutting condition have to be selected because of chip packing.

  • PDF

Modeling of the Centerless Through-feed Grinding Process

  • Kim, Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1036-1043
    • /
    • 2003
  • A computer simulation method for investigating the form generation mechanism in the centerless through-feed grinding process is described. The length of the contact line and the magnitude of the grinding force between the grinding wheel and workpieces, vary with the change in the axial location of the current workpiece during grinding. Thus, a new coordinate system and a grinding force curve of previous and/or following workpieces are introduced to treat the axial motion. Experiments and computer simulations were carried out using four types of cylindrical workpiece shapes. To validate this model, simulation results are compared with the experimental results.

A Development of Single Action Press Robot (프레스 단동로봇의 개발)

  • 허성창;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.261-264
    • /
    • 1997
  • A single action press robot, which consists of a driving unit, rotator, up-down feed base and feed bar, is developed and applied for the press automation. The driving unit is made up with a face cam and blade cam, which have a phase angle. The feeding system consists of a double speed-up apparatus and linear motion guides, and has a fast motion characteristics. A horizontal feeding speed of the feed bar is increased twice by the double speed-up apparatus. The driving mechanism could be simplified due to the speed-up of the feeding unit.

  • PDF

A Study on the Wear of partially coated Pinion Cutter (부분 피복 피니언 공구의 마멸에 관한 연구)

  • 김상균;지용권;김인성;조용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.74-79
    • /
    • 1996
  • The wear of partially coated pinion cutters under several cutting conditions was studied. In the realm of this experiment, chipping was a dominant tool wear mechanism and flank wear was much larger than crater wear. Under the condition of relatively low rotary feed and low radial feed rate, the wear due to chipping was concentrated at the nose part of pinion cutter. Increasing of rotary feed and radial feed rate alleviated the concentration of chipping at nose and prolonged tool life.

  • PDF