• Title/Summary/Keyword: Feed additive

Search Result 377, Processing Time 0.027 seconds

Effects of Manufacturing Methods of Broiler Litter and Bakery By-product Ration for Ruminants on Physico-chemical Properties (육계분과 제과부산물을 이용한 반추가축용 완전혼합사료(TMR) 제조 시 가공처리 방법이 물리화학적 특성에 미치는 영향)

  • Kwak, W.S.;Yoon, J.S.;Jung, K.K.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.593-606
    • /
    • 2003
  • This study was conducted to develop effective manufacturing methods of a total mixed ration(TMR) composed of broiler litter(BL) and bakery by-product(BB) for ruminants. Five experiments included a small-scaled manufacture of TMR using a deepstacking method(Exp. 1), its pelletization(Exp. 2), its field-scaled manufacture(Exp. 3), a field-scaled manufacture using an ensiling method(Exp. 4), and a mixing process of deepstacked BL and BB prior to feeding(Exp. 5). BL and BB were mixed at a ratio which makes total digestible nutrients of the TMR 69%. For each experiment, temperature, appearance and physico-chemical properties were recorded and analyzed. The chemical composition data revealed that the mixture of BL and BB showed nutritionally additive balance which resulted from a considerable increase(P<0.05) of organic matter and a desirable decrease(P<0.05) of protein and fiber up to the requirement level for growing ‘Hanwoo’ steers. Deepstacking of BL and BB in Exp. 1 and 3 resulted in a sufficient increase of stack temperature for pasteurization, little chemical losses, appearance of white fungi on the surface, and partial charring due to excess stack temperature. For Exp. 2, its pelleting, which was successful using a simple, small-scaled pelletizer, resulted in a little loss(P<0.05) of organic matter and an increase(P<0.05) of indigestible protein(ADF-CP). Ensiling the mixture in Exp. 4 made little effect on chemical composition; however, one month of the ensiling period was not enough for favorable silage parameters. Deepstacking BL alone in Exp. 5 tended(P<0.1) to decrease true protein : NPN ratio and hemicellulose content and increase ADF-CP content due to the heat damage occurred. Deepstacking or ensiling of BL-BB mixtures and simple incorporating of BB into deepstacked BL prior to feeding could be practical and nutrients-preservative methods in TMR manufacture for beef cattle, although ensiling needed further hygienic evaluation.

Optimization of PS-7 Production Process by Azotobacter indicus var. myxogenes L3 Using the Control of Carbon Source Composition (탄소원 조성 조절을 이용한 Azotobacter indicus var. myxogenes L3로부터 PS-7 생산 최적화)

  • Ra, Chae-Hun;Kim, Ki-Myong;Hoe, Pil-Woo;Lee, Sung-Jae;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • The proteins in whey are separated and used as food additives. The remains (mainly lactose) are spray-dried to produce sweet whey powder, which is widely used as an additive for animal feed. Sweet whey powder is also used as a carbon source for the production of valuable products such as polysaccharides. Glucose, fructose, galactose, and sucrose as asupplemental carbon source were evaluated for the production of PS-7 from Azotobacter indicus var. myxogenes L3 grown on whey based MSM media. Productions of PS-7 with 2% (w/v) fructose and sucrose were 2.05 and 2.31g/L, respectively. The highest production of PS-7 was 2.82g/L when 2% (w/v) glucose was used as the carbon source. Galactose showed low production of PS-7 among the carbon sources tested. The effects of various carbon sources addition to whey based MSM medium showed that glucose could be the best candidate for the enhancement of PS-7 production using whey based MSM medium. To evaluate the effect of glucose addition to whey based media on PS-7 production, fermentations with whey and glucose mixture (whey 1, 2, 3%; whey 1% + glucose 1%, whey 1% + glucose 2% and glucose 2%, w/v) were carried out. Significant enhancement of PS-7 production with addition of 1% (w/v) and 2% (w/v) glucose in 1% (w/v) whey media was observed. The PS-7 concentration of 2% glucose added whey lactose based medium was higher than that of 1% glucose addition, however, the product yield $Y_{p/s}$ was higher in 1% glucose added whey lactose based MSM medium. Therefore, the optimal condition for the PS-7 production from the Azotobacter indicus var.myxogenes L3, was 1% glucose addition to 1% whey lactose MSM medium.

Effects of Dietary Ginseng By-product on Growth Performance and Pork Quality Parameters in Finishing Pigs (인삼부산물 급여에 따른 비육돈의 생산성 및 육질 특성에 미치는 영향)

  • Park, J.C.;Kim, Y.H.;Jung, H.J.;Ji, S.Y.;Lee, S.D.;Ryu, J.W.;Jang, H.D.;Moon, H.K.;Kim, I.C.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.839-846
    • /
    • 2007
  • The objective of the present study was to investigate the effect of dietary supplementation of the ginseng by-product on growth performance and meat quality in finishing pigs. The animals used in the experiment were a total of 24 Landrace×Yorkshire and weighted 65.81±2.02kg. The experimental diets were basal diet(CON) and 2.5% ginseng by-product(GBP), which replaced lupin in basal diet. The pigs were allotted at 4 pigs per pen with three replicate pens per treatment by completely randomized design. In growth performance, ADFI was significantly lower(P<0.0001) in GBP than in CON. In plasma biochemical composition, total protein(P<0.01), blood urea nitrogen(P<0.03), glucose(P<0.01), albumin(P<0.02), calcium(P<0.01) and inorganic phosphate(P<0.01) were significantly higher in GBP than in CON. Carcass and meat quality were not significantly different between treatments. Total ginsenoside content on meat was significantly higher(P<0.0001) in GBP than in CON. TBARs was significantly lower in GBP than in CON for 6 days(P<0.03) and 12 days (P<0.06), respectively. Our research indicates that plasma biochemical composition, total ginsenoside content and TBARs were affected when replaced with ginseng by-product. Ginseng by-product in the pig diet increased pig muscle ginsenoside, indicating that ginseng by-product can be used as a feed additive.

Effects of Dietary Supplementation of Codonopsis pilosula Extract Powder on the Productivity and Immunity in Sows and Piglets (임신돈 사료 내 만삼추출분말의 첨가 급여가 모돈과 자돈의 생산성 및 면역력에 미치는 영향)

  • Kim, Ki-Hyun;Kim, Kwang-Sik;Kim, Jo-Eun;Jung, Hyun-Jung;Lee, Sung-Dae;Sa, Soo-Jin;Hong, Joon-Ki;Hur, Tai-Young;Park, Jun-Cheol;Kim, Young-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.3
    • /
    • pp.423-435
    • /
    • 2013
  • The Codonopsis pilosula is traditional oriental herb associated with immune-modulatory functions and has anti-inflammatory properties and antioxidative activity. The present study was conducted to investigate the effects of dietary supplementation of Codonopsis pilosula extract powder (CEP) on the immunity and productivity in sows and piglets. A total of 20 pregnant sows were randomly assigned to two dietary treatments, which was given a corn-soybean meal diet with 0% and 0.5% CEP from 40 days prepartum to weaning (25 days postpartum). The immune system of piglets was expected to build up, because the feeding of CEP might increase the colostrum contents in sows. We also predicted that the growth performance of piglets also could be increased by some compensation effects due to the increased immunity of piglets. In results, immunities of sows and piglets as well as growth performance of piglets were not affected by the supplementation of CEP. The correlation between the colostrum and the serum on the IgG contents tended to have a positive correlation, although there was no significant (coefficient, 0.435; P=0.102). This result suggests that the supplementation of CEP may increase IgG contents in sows and piglets and contribute to improve immunity of piglets. In conclusion, it is thought that the physiologically active substances of CEP did not influence to the immune synergic effects in vivo of sows. Thus, the metabolic and action mechanism of the physiologically active substances of CEP should be explored to evaluate the availability of CEP as a feed additive for the immunomodulator.

Dietary effect of Bacillus subtilis MD-02 on Innate Immune Response and Disease Resistance in Olive Flounder, Paralichthys olivaceus (넙치(Paralichthys olivaceus)의 비특이적 면역반응 및 병 저항성에 대한 Bacillus subtilis MD-02의 효과)

  • Kim, Dong-Hwi;Heo, Moon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.132-138
    • /
    • 2019
  • Among several marine-derived microorganisms isolated from the coast of Jeju Island that had antimicrobial activity against fish disease pathogens, Bacillus subtilis MD-02 was tested for its dietary effect on the innate immune response and disease resistance of olive flounder. Strain MD-02 was fed to the olive flounder at a concentration of $1.2{\times}10^4$, $1.2{\times}10^6$, or $1.2{\times}10^8CFU/100g$, respectively. Consequently, the hematocrit was higher in these three groups than that in the control group at 4 weeks, and the aspartate aminotransferase and alanine aminotransferase levels were decreased in the $1.2{\times}10^8$ and $1.2{\times}10^4CFU/100$ groups compared with the control group levels. The amylase activity and total protein were significantly increased in the $1.2{\times}10^4CFU/100g$ group at 3 weeks. The innate immune response, determined from the lysozyme and macrophage activities, was higher in the $1.2{\times}10^8CFU/100g$ group than in the control group. In addition, treatment of the olive flounders with Streptococcus parauberis at $1.2{\times}10^6CFU/ml$ confirmed the mortality rate, which was 100% in the control group and 40-60% in the groups fed B. subtilis MD-02, indicating that the fish had resistance to fish disease pathogens. Therefore, it was confirmed that when fed MD-02, olive flounder builds an innate immune response and acquires resistance to fish disease pathogens, indicating that B. subtilis MD-02 can be developed as a beneficial feed additive.

Gut Microbiome and Gut Immunity in Broiler Chickens Fed Allium hookeri Root Powder from Day 10 to 28 (육계 사료 내 삼채뿌리분말 첨가가 장내 미생물 및 장관면역에 미치는 영향)

  • Woonhak Ji;Inho Cho;Sang Seok Joo;Moongyeong Jung;Chae Won Lee;June Hyeok Yoon;Su Hyun An;Myunghoo Kim;Changsu Kong
    • Korean Journal of Poultry Science
    • /
    • v.50 no.3
    • /
    • pp.171-185
    • /
    • 2023
  • This study was conducted to investigate the effects of supplementation of Allium hookeri (AH) root powder on the gut microbiome, immunity, and health in broiler chickens fed experimental diets from d 10 to 28. A total of 60 10-day-old Ross 308 broilers were weighed and assigned to two dietary treatments with 5 birds per cage in a randomized complete block design based on body weight. The two experimental diets consisted of a control diet based on corn-soybean meal and the control diet supplemented with 0.3% AH root powder. All birds were fed ad libitum with experimental diets and water for 18 d. At 28 d, two birds near the median weight from each cage were selected for cecal content and small intestinal tissue sample collection. The addition of AH changed the gut microbiome by increasing probiotic candidate beneficial bacteria such as Enterococcaceae, Lactobacillaceae, Limosilactobacillus, Cuneatibacter, and Ruminoccoides. Regarding gut immunity, the supplementation of AH resulted in changes in intestinal immune cells, including reduced CD3+CD4+ T cells, which are a type of helper T cell, in the small intestine of birds (P=0.049). Additionally, there was a tendency to increase the expression of antioxidant function-related gene such as GPX2 (P=0.060), but no significant changes were observed in cytokines such as IL1b, IL6, and IL10. Overall, the addition of AH root powder may have positive effects on the microbiome of the chickens. This may help promote gut health in broiler chickens at the age of d 10 to 28.

Effects of the Brown Seaweed Residues Supplementation on In Vitro Fermentation and Milk Production and Composition of Lactating Dairy Cows (미역부산물 첨가가 In Vitro 발효성상과 젖소의 산유량 및 유성분에 미치는 영향)

  • Baek, I.K.;Maeng, W.J.;Lee, S.H.;Lee, H.G.;Lee, S.R.;Ha, J.K.;Lee, S.S.;Hwang, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.373-386
    • /
    • 2004
  • This study was conducted to investigate effects of the brown seaweed residues supplementation on in vitro fermentation, and milk yield and milk composition of dairy cows. Therefore, two experiments consisting of an in vitro and an in vivo growth trial were used. In in vitro experiment, brown seaweed residues(BSR) was supplemented in basal diet with 0, 1, 2 and 4% respectively, and incubated for 3, 6, 9, 12, and 24 h. The pH value, ammonia-N and VFA were investigated. The pH value tended to increase with increasing BSR during the incubation. Particularly, pH was significantly higher in BSR treatments compared with control at 9 h(p < 0.05). While, ammonia-N concentration was not significantly different across treatments during the whole incubation. BSR supplementation did not affect total VFA production, but acetate was linearly increased in BSR treatments compared with control at 12 h(p < 0.05), and its concentration was highest(92.70 mM) in 4% BSR among treatments. The concentration of iso-butyrate tended to increase in BSR treatments in comparison to control during the incubation. In addition, the concentration of iso-valerate was higher in BSR treatments compared with control at 12 and 24 h. In growth trial, BSR was added(800 g/d/animaI) to diets of dairy cow. Dry matter intake was not affected by BSR supplementation, but daily milk yield(kg) significantly increased in BSR treatment compared with control(p < 0.05). However, milk composition(%) and milk yield(kg) were not significantly different between treatments. Milk fat(% and kg/d) tended to slightly decrease in BSR treatment compared with control(3.59% and 1.06 kg/d vs. 3.32% and 1.01 kg/d), The contents of C16:0 and C20:4 in milk significantly increased in BSR treatment compared with control reflecting from dietary fatty acid composition. The content of C18:0 in milk which is end product of biohydrogenation of CI8 unsaturated fatty acids in the rumen significantly increased in BSR treatment compared with control(p < 0.05). C18:2 content in milk tended to decrease, but tended to increase trans-II C18:l and CLA contents in milk in BSR treatment compared with control. In conclusion, it could be summarized that BSR may stabilize rumen pH, and it could improve milk yield and CIA content in milk with more than 4% of diet. Therefore, BSR could be beneficially used in dairy diets as a feed additive.