Deep learning models, especially those based on long short-term memory (LSTM), have presented their superiority in addressing time series data issues recently. This study aims to comprehensively evaluate the performance of deep learning models that belong to the supervised learning category in streamflow prediction. Therefore, six deep learning models-standard LSTM, standard gated recurrent unit (GRU), stacked LSTM, bidirectional LSTM (BiLSTM), feed-forward neural network (FFNN), and convolutional neural network (CNN) models-were of interest in this study. The Red River system, one of the largest river basins in Vietnam, was adopted as a case study. In addition, deep learning models were designed to forecast flowrate for one- and two-day ahead at Son Tay hydrological station on the Red River using a series of observed flowrate data at seven hydrological stations on three major river branches of the Red River system-Thao River, Da River, and Lo River-as the input data for training, validation, and testing. The comparison results have indicated that the four LSTM-based models exhibit significantly better performance and maintain stability than the FFNN and CNN models. Moreover, LSTM-based models may reach impressive predictions even in the presence of upstream reservoirs and dams. In the case of the stacked LSTM and BiLSTM models, the complexity of these models is not accompanied by performance improvement because their respective performance is not higher than the two standard models (LSTM and GRU). As a result, we realized that in the context of hydrological forecasting problems, simple architectural models such as LSTM and GRU (with one hidden layer) are sufficient to produce highly reliable forecasts while minimizing computation time because of the sequential data nature.
Saeed Kamarian;Ali Khalvandi;Thanh Mai Nguyen Tran;Reza Barbaz-Isfahani;Saeed Saber-Samandari;Jung-Il Song
Advances in nano research
/
제15권4호
/
pp.315-328
/
2023
The main goal of the present study was to assess the effects of eggshell powder (ESP) and halloysite nanotubes (HNTs) on the mechanical properties of abaca fiber (AF)-reinforced natural composites. For this purpose, a limited number of indentation tests were first performed on the AF/polypropylene (PP) composites for different HNT and ESP loadings (0 wt.% ~ 6 wt.%), load amplitudes (150, 200, and 250 N), and two types of indenters (Vickers or conical). The Young's modulus, hardness and plasticity index of each specimen were calculated using the indentation test results and Oliver-Pharr method. The accuracy of the experimental results was confirmed by comparing the values of the Young's modulus obtained from the indentation test with the results of the conventional tensile test. Then, a feed-forward shallow artificial neural network (ANN) with high efficiency was trained based on the obtained experimental data. The trained ANN could properly predict the variations of the mentioned mechanical properties of AF/PP composites incorporated with different HNT and ESP loadings. Furthermore, the trained ANN demonstrated that HNTs increase the elastic modulus and hardness of the composite, while the incorporation of ESP reduces these properties. For instance, the Young's modulus of composites incorporated with 3 wt.% of ESP decreased by 30.7% compared with the pure composite, while increasing the weight fraction of ESP up to 6% decreased the Young's modulus by 34.8%. Moreover, the trained ANN indicated that HNTs have a more significant effect on reducing the plasticity index than ESP.
이 연구에서는 간질 환자의 F-18-FDG 뇌 PET 영상을 공간정규화 기법으로 표준지도 위에 정규화한 후 표준지도의 해부학적 위치 정보를 이용하여 뇌기능영상의 영역을 자동적으로 분할하고 각 해부학적 위치의 F-18-FDG 섭취율을 추출하였다. 뇌 각 영역의 F-18-FDG 섭취율을 데이터베이스화한 것을 입력으로 하는 인공신경회로망을 구성하고 학습시켜 핵의학 전문의가 판독한 결과와 얼마나 일치되는지를 분석하였다. 핵의학 전문의 2명이 좌측측두엽간질(112명), 우측측두엽간질(81명) 혹은 정상(64명)으로 판독한 F-18-FDG 뇌 PET 영상을 대상으로, 학습의 치우침을 줄이기 위해 각 질환 군에서 동일한 수(40명)를 선택하여 학습군을 구성하고 학습군을 제외한 정상 24명, 좌측측두엽간질 72명, 우측 측두엽간질 41명의 F-18-FDG PET을 시험군으로 하였다. 모든 영상을 SPM76을 이용하여 MNI 표준지도 위에 공간정규화하고 전체 뇌영역의 평균 계수를 100으로 정규화하였다. 영역 분할 프로그램을 개발하여 표준지도를 34개 영역으로 분할하고 모든 영상에서 각 뇌영역엔 대한 평균 계수를 추출하였다. 비선형 패턴분류에 효과적인 다층퍼셉트론 신경회로망 모델을 써서 오류역전파 알고리즘으로 학습시켰다. 한 층의 은닉층을 부여하고 은닉층의 뉴런 수를 5개부터 차츰 늘려가며 최적의 개수를 선택하였다. 초기 가중치와 바이어스 값은 무작위 값을 갖게 하였다. 출력단은 세 개의 뉴런을 갖고 각 뉴런은 입력이 정상이면 [1 0 0], 좌측측두엽간질이면 [0 1 0], 우측측두엽간질이면 [0 1 0]의 값을 탐 값으로 하였다. 뉴런의 활성화 함수는 시그모이드 함수를 사용하였다. 입력단은 17개의 뉴런으로 구성하고 서로 마주보는 뇌영역의 계수 타이(오른쪽-왼쪽)를 입력으로 하였다 회로망의 학습 횟수를 10,000번으로 제한하여 오타의 허용치를 1로 설정하고 학습 횟수가 넘거나 오차가 허용치보다 작을 때 학습을 중단하게 하였다. 모멘텀과 적응형 학습율을 사용하여 신경회로망의 성능을 향상시키고 학습 속도를 빠르게 하였다. 모든 PET 영상에서 성공적으로 공간정규화 파라메터를 추출하여 표준지도에 정규화할 수 있었다 다층퍼셉트론 모델을 기반으로 한 인공신경회로망으로 27개의 은닉층 뉴런을 사용했을 때 최적의 결과를 얻을 수 있었다. 학습군에 대해서 1508번의 반복 학습을 시킨 결과 오차율 0%인 신경 회로망을 얻었으며 시험군에 대해 적용한 결과 전문가의 판독결과와 80.3%의 일치율을 보였다. 은닉층의 뉴런 수가 10개나 30개인 경우에도 학습군에 대해 오타율 0%인 신경회로망을 얻을 수 있었으며 이때의 시험군에 대한 일치율 역시 75∼80%의 값을 보였다.
IEIE Transactions on Smart Processing and Computing
/
제2권6호
/
pp.323-331
/
2013
An extreme learning machine (ELM) is an efficient learning algorithm that is based on the generalized single, hidden-layer feed-forward networks (SLFNs), which perform well in classification applications. Many studies have demonstrated its superiority over the existing classical algorithms: support vector machine (SVM) and BP neural network. This paper presents a novel face recognition approach based on a multi-class project extreme learning machine (MPELM) classifier and 2D Gabor transform. First, all face image features were extracted using 2D Gabor filters, and the MPELM classifier was used to determine the final face classification. Two well-known face databases (CMU-PIE and ORL) were used to evaluate the performance. The experimental results showed that the MPELM-based method outperformed the ELM-based method as well as other methods.
한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
/
pp.288-295
/
1998
This paper proposes a new data classification method based on the tolerant rough set that extends the existing equivalent rough set. Similarity measure between two data is described by a distance function of all constituent attributes and they are defined to be tolerant when their similarity measure exceeds a similarity threshold value. The determination of optimal similarity theshold value is very important for the accurate classification. So, we determine it optimally by using the genetic algorithm (GA), where the goal of evolution is to balance two requirements such that (1) some tolerant objects are required to be included in the same class as many as possible. After finding the optimal similarity threshold value, a tolerant set of each object is obtained and the data set is grounded into the lower and upper approximation set depending on the coincidence of their classes. We propose a two-stage classification method that all data are classified by using the lower approxi ation at the first stage and then the non-classified data at the first stage are classified again by using the rough membership functions obtained from the upper approximation set. We apply the proposed classification method to the handwritten numeral character classification. problem and compare its classification performance and learning time with those of the feed forward neural network's back propagation algorithm.
In this study, we designed a data-driven model to predict chlorophyll-a using M5P model tree and extreme learning machine (ELM). The Juksan weir in the Youngsan River has high chlorophyll-a, which is the primary indicator of algal bloom every year. Short-term algal bloom prediction is important for environmental management and ecological assessment. Two models were developed and evaluated for short-term algal bloom prediction. M5P is a classification and regression-analysis-based method, and ELM is a feed-forward neural network with fast learning using the least square estimate for regression. The dataset used in this study includes water temperature, rainfall, solar radiation, total nitrogen, total phosphorus, N/P ratio, and chlorophyll-a, which were collected on a daily basis from January 2013 to December 2016. The M5P model showed that the prediction model after one day had the highest performance power and dropped off rapidly starting with predictions after three days. Comparing the performance power of the ELM model with the M5P model, it was found that the performance power of the 1-7 d chlorophyll-a prediction model was higher. Moreover, in a period of rapidly increasing algal blooms, the ELM model showed higher accuracy than the M5P model.
2003년 5월부터 2005년 11월까지 산란계의 전염성기관지염(IB) 예찰 프로그램에 등록한 농장에 대한 역학조사에서 얻은 자료에 근거하여 IB 감염을 확인할 수 있는 모형을 구축하기 위하여 16개의 입력 뉴런, 3 개의 은닉 뉴런, 1개의 출력 뉴런으로 구성된 3층 인공신경망 모형을 개발하였다. 총 86개의 계군 중 77개는 훈련자료에 할당하고 나머지 9개는 검정자료로 무작위로 할당하여 back-propagation algorithm으로 신경망 훈련을 수행하였다. 입력 뉴런은 산란계군의 특성, 사양관리, 계군의 크기 등 16개의 역학조사 항목을 사용하였으며 출력 뉴런은 IB 감염의 유무로 투입하였다. 훈련된 신경망을 검정자료에 적용하여 민감도와 특이도를 산출하였으며 진단의 정확도는 receiver operating characteristic (ROC) 곡선을 사용하여 곡선 밑의 면적(AUC)을 계산하여 평가하였다. 입력 뉴런의 특성과 훈련모수를 변경하면서 다양한 신경망을 구성하였으며 최적의 신경망으로 확인된 IBV_D1 신경망의 경우 훈련자료에 대하여 77건 중 73건을 올바르게 판단하여 94.8%의 정확도를 보였다. 민감도와 특이도는 각각 95.5% (42/44, 95% CI, 84.5-99.4)와 93.9% (31/33, 95% CI, 79.8-99.3)로 나타났다. 훈련된 신경망을 검정자료에 적용하여 ROC 곡선을 작성한 결과 AUC는 전체의 94.8% (SE=0.086, 95% CI 0.592-0.961)를 차지하는 우수한 모형으로 나타났다. ROC 곡선에서 기준을 0.7149 이상으로 판단할 때 진단의 정확도가 88.9%로 가장 높았으며 100%의 민감도를 달성하였다. 이러한 민감도와 특이도에서 44%의 IB 유병률을 가정할 때 IBV_D1 모형은 80%의 양성예측도와 100%의 음성예측도를 보였다. 이러한 소견에 근거할 때 본 연구에서 구축한 신경망 모형은 산란계군에서 IB의 존재를 확인하기 위한 목적에 성공적으로 응용될 수 있을 것으로 판단되었다.
Gruber, P.;Farhat, M.;Odermatt, P.;Etterlin, M.;Lerch, T.;Frei, M.
International Journal of Fluid Machinery and Systems
/
제8권4호
/
pp.264-273
/
2015
This presentation describes an experimental approach for the detection of cavitation in hydraulic machines by use of ultrasonic signal analysis. Instead of using the high frequency pulses (typically 1MHz) only for transit time measurement different other signal characteristics are extracted from the individual signals and its correlation function with reference signals in order to gain knowledge of the water conditions. As the pulse repetition rate is high (typically 100Hz), statistical parameters can be extracted of the signals. The idea is to find patterns in the parameters by a classifier that can distinguish between the different water states. This classification scheme has been applied to different cavitation sections: a sphere in a water flow in circular tube at the HSLU in Lucerne, a NACA profile in a cavitation tunnel and two Francis model test turbines all at LMH in Lausanne. From the signal raw data several statistical parameters in the time and frequency domain as well as from the correlation function with reference signals have been determined. As classifiers two methods were used: neural feed forward networks and decision trees. For both classification methods realizations with lowest complexity as possible are of special interest. It is shown that two to three signal characteristics, two from the signal itself and one from the correlation function are in many cases sufficient for the detection capability. The final goal is to combine these results with operating point, vibration, acoustic emission and dynamic pressure information such that a distinction between dangerous and not dangerous cavitation is possible.
In this paper, for efficiently reducing the computational cost of the model updating during the optimization process of damage detection, the structural response is evaluated using properly trained surrogate model. Furthermore, in practice uncertainties in the FE model parameters and modelling errors are inevitable. Hence, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The current work builds a framework for Probability Based Damage Detection (PBDD) of structures based on the best combination of metaheuristic optimization algorithm and surrogate models. To reach this goal, three popular metamodeling techniques including Cascade Feed Forward Neural Network (CFNN), Least Square Support Vector Machines (LS-SVMs) and Kriging are constructed, trained and tested in order to inspect features and faults of each algorithm. Furthermore, three wellknown optimization algorithms including Ideal Gas Molecular Movement (IGMM), Particle Swarm Optimization (PSO) and Bat Algorithm (BA) are utilized and the comparative results are presented accordingly. Furthermore, efficient schemes are implemented on these algorithms to improve their performance in handling problems with a large number of variables. By considering various indices for measuring the accuracy and computational time of PBDD process, the results indicate that combination of LS-SVM surrogate model by IGMM optimization algorithm have better performance in predicting the of damage compared with other methods.
As a valid numerical method to obtain a high-resolution result of a flow field, computational fluid dynamics (CFD) have been widely used to study coolant flow and heat transfer characteristics in fuel rod bundles. However, the time-consuming, iterative calculation of Navier-Stokes equations makes CFD unsuitable for the scenarios that require efficient simulation such as sensitivity analysis and uncertainty quantification. To solve this problem, a reduced-order model (ROM) based on proper orthogonal decomposition (POD) and machine learning (ML) is proposed to simulate the flow field efficiently. Firstly, a validated CFD model to output the flow field data set of the rod bundle is established. Secondly, based on the POD method, the modes and corresponding coefficients of the flow field were extracted. Then, an deep feed-forward neural network, due to its efficiency in approximating arbitrary functions and its ability to handle high-dimensional and strong nonlinear problems, is selected to build a model that maps the non-linear relationship between the mode coefficients and the boundary conditions. A trained surrogate model for modes coefficients prediction is obtained after a certain number of training iterations. Finally, the flow field is reconstructed by combining the product of the POD basis and coefficients. Based on the test dataset, an evaluation of the ROM is carried out. The evaluation results show that the proposed POD-ROM accurately describe the flow status of the fluid field in rod bundles with high resolution in only a few milliseconds.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.