• Title/Summary/Keyword: Feed Forward Back-propagation

Search Result 82, Processing Time 0.026 seconds

Frame Based Classification of Underwater Transient Signal Using MFCC Feature Vector and Neural Network (MFCC 특징벡터와 신경회로망을 이용한 프레임 기반의 수중 천이신호 식별)

  • Lim, Tae-Gyun;Kim, Il-Hwan;Kim, Tae-Hwan;Bae, Keun-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.883-884
    • /
    • 2008
  • This paper presents a method for classification of underwater transient signals using, which employs a binary image pattern of the mel-frequency cepstral coefficients(MFCC) as a feature vector and a neural network as a classifier. A feature vector is obtained by taking DCT and 1-bit quantization for the square matrix of the MFCC sequences. The classifier is a feed-forward neural network having one hidden layer and one output layer, and a back propagation algorithm is used to update the weighting vector of each layer. Experimental results with some underwater transient signals demonstrate that the proposed method is very promising for classification of underwater transient signals.

  • PDF

A multi-crack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network

  • Abolbashari, Mohammad Hossein;Nazari, Foad;Rad, Javad Soltani
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.299-313
    • /
    • 2014
  • In the first part of this paper, the influences of some of crack parameters on natural frequencies of a cracked cantilever Functionally Graded Beam (FGB) are studied. A cantilever beam is modeled using Finite Element Method (FEM) and its natural frequencies are obtained for different conditions of cracks. Then effect of variation of depth and location of cracks on natural frequencies of FGB with single and multiple cracks are investigated. In the second part, two Multi-Layer Feed Forward (MLFF) Artificial Neural Networks (ANNs) are designed for prediction of FGB's Cracks' location and depth. Particle Swarm Optimization (PSO) and Back-Error Propagation (BEP) algorithms are applied for training ANNs. The accuracy of two training methods' results are investigated.

Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Suhatril, Meldi;Shariati, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.853-868
    • /
    • 2013
  • The comparison of the effectiveness of artificial neural network (ANN) and linear regression (LR) in the prediction of strain in tie section using experimental data from eight high-strength-self-compact-concrete (HSSCC) deep beams are presented here. Prior to the aforementioned, a suitable ANN architecture was identified. The format of the network architecture was ten input parameters, two hidden layers, and one output. The feed forward back propagation neural network of eleven and ten neurons in first and second TRAINLM training function was highly accurate and generated more precise tie strain diagrams compared to classical LR. The ANN's MSE values are 90 times smaller than the LR's. The correlation coefficient value from ANN is 0.9995 which is indicative of a high level of confidence.

Development of Prediction Model for Root Industry Production Process Using Artificial Neural Network (인공신경망을 이용한 뿌리산업 생산공정 예측 모델 개발)

  • Bak, Chanbeom;Son, Hungsun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.23-27
    • /
    • 2017
  • This paper aims to develop a prediction model for the product quality of a casting process. Prediction of the product quality utilizes an artificial neural network (ANN) in order to renovate the manufacturing technology of the root industry. Various aspects of the research on the prediction algorithm for the casting process using an ANN have been investigated. First, the key process parameters have been selected by means of a statistics analysis of the process data. Then, the optimal number of the layers and neurons in the ANN structure is established. Next, feed-forward back propagation and the Levenberg-Marquardt algorithm are selected to be used for training. Simulation of the predicted product quality shows that the prediction is accurate. Finally, the proposed method shows that use of the ANN can be an effective tool for predicting the results of the casting process.

Prediction Partial Molar Heat Capacity at Infinite Dilution for Aqueous Solutions of Various Polar Aromatic Compounds over a Wide Range of Conditions Using Artificial Neural Networks

  • Habibi-Yangjeh, Aziz;Esmailian, Mahdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1477-1484
    • /
    • 2007
  • Artificial neural networks (ANNs), for a first time, were successfully developed for the prediction partial molar heat capacity of aqueous solutions at infinite dilution for various polar aromatic compounds over wide range of temperatures (303.55-623.20 K) and pressures (0.1-30.2 MPa). Two three-layered feed forward ANNs with back-propagation of error were generated using three (the heat capacity in T = 303.55 K and P = 0.1 MPa, temperature and pressure) and six parameters (four theoretical descriptors, temperature and pressure) as inputs and its output is partial molar heat capacity at infinite dilution. It was found that properly selected and trained neural networks could fairly represent dependence of the heat capacity on the molecular descriptors, temperature and pressure. Mean percentage deviations (MPD) for prediction set by the models are 4.755 and 4.642, respectively.

A Design Method for a New Multi-layer Neural Networks Incorporating Prior Knowledge (사전 정보를 이용한 다층신경망의 설계)

  • 김병호;이지홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.56-65
    • /
    • 1993
  • This paper presents the design consideration of the MFNNs(Multilayer Feed forward Neural Networks) based on the distribution of the given teching patterns. By extracting the feature points from the given teaching patterns, the structure of a network including the netowrk size and interconnection weights of a network is initialized. This network is trained based on the modified version of the EBP(Error Back Propagation) algorithm. As a result, the proposed method has the advantage of learning speed compared to the conventional learning of the MFNNs with randomly chosen initial weights. To show the effectiveness of the suggested approach, the simulation result on the approximation of a two demensional continuous function is shown.

  • PDF

Implementation of A Pulse-mode Digital Neural Network with On-chip Learning Using Stochastic Computation (On-Chip 학습기능을 가진 확률연산 펄스형 디지털 신경망의 구현)

  • Wee, Jae-Woo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2296-2298
    • /
    • 1998
  • In this paper, an on-chip learning pulse-mode digital neural network with a massively parallel yet compact and flexible network architecture is suggested. Algebraic neural operations are replaced by stochastic processes using pseudo-random sequences and simple logic gates are used as basic computing elements. Using Back-propagation algorithm both feed-forward and learning phases are efficiently implemented with simple logical gates. RNG architecture using LFSR and barrel shifter are adopted to avoid some correlation between pulse trains. Suggested network is designed in digital circuit and its performance is verified by computer simulation.

  • PDF

Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures

  • Cheng, Jin;Cai, C.S.;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.251-262
    • /
    • 2007
  • This paper examines the application of artificial neural networks (ANN) to the response prediction of geometrically nonlinear truss structures. Two types of analysis (deterministic and probabilistic analyses) are considered. A three-layer feed-forward backpropagation network with three input nodes, five hidden layer nodes and two output nodes is firstly developed for the deterministic response analysis. Then a back propagation training algorithm with Bayesian regularization is used to train the network. The trained network is then successfully combined with a direct Monte Carlo Simulation (MCS) to perform a probabilistic response analysis of geometrically nonlinear truss structures. Finally, the proposed ANN is applied to predict the response of a geometrically nonlinear truss structure. It is found that the proposed ANN is very efficient and reasonable in predicting the response of geometrically nonlinear truss structures.

Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Jumaat, Mohd Zamin;Jameel, Mohammed;Arumugam, Arul M.S.
    • Computers and Concrete
    • /
    • v.11 no.3
    • /
    • pp.237-252
    • /
    • 2013
  • This paper presents the application of artificial neural network (ANN) to predict deep beam deflection using experimental data from eight high-strength-self-compacting-concrete (HSSCC) deep beams. The optimized network architecture was ten input parameters, two hidden layers, and one output. The feed forward back propagation neural network of ten and four neurons in first and second hidden layers using TRAINLM training function predicted highly accurate and more precise load-deflection diagrams compared to classical linear regression (LR). The ANN's MSE values are 40 times smaller than the LR's. The test data R value from ANN is 0.9931; thus indicating a high confidence level.

Shear lag prediction in symmetrical laminated composite box beams using artificial neural network

  • Chandak, Rajeev;Upadhyay, Akhil;Bhargava, Pradeep
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.77-89
    • /
    • 2008
  • Presence of high degree of orthotropy enhances shear lag phenomenon in laminated composite box-beams and it persists till failure. In this paper three key parameters governing shear lag behavior of laminated composite box beams are identified and defined by simple expressions. Uniqueness of the identified key parameters is proved with the help of finite element method (FEM) based studies. In addition to this, for the sake of generalization of prediction of shear lag effect in symmetrical laminated composite box beams a feed forward back propagation neural network (BPNN) model is developed. The network is trained and tested using the data base generated by extensive FEM studies carried out for various b/D, b/tF, tF/tW and laminate configurations. An optimum network architecture has been established which can effectively learn the pattern. Computational efficiency of the developed ANN makes it suitable for use in optimum design of laminated composite box-beams.