Recently, decentralized approaches to artificial intelligence (AI) development, such as federated learning are drawing attention as AI development's cost and time inefficiency increase due to explosive data growth and rapid environmental changes. Collaborative AI technology that dynamically organizes collaborative groups between different agents to share data, knowledge, and experience and uses distributed resources to derive enhanced knowledge and analysis models through collaborative learning to solve given problems is an alternative to centralized AI. This article investigates and analyzes recent technologies and applications applicable to the research of multi-agent collaboration of AI bots, which can provide collaborative AI functionality autonomously.
본 연구는 미국 켄터키 주에 소재한 머레이 주립대(Murray State University)가 제공하고 있는 주제별 맞춤형 정보제공(Library on Blackboard) 시스템의 기능들을 중심으로 현존하는 대학도서관 서비스가 온라인상에서 어떠한 정보기술을 통해 변형되어 제공될 수 있는지를 살펴보았다. 정보기술의 발달로 인하여 미국 대학교육에서 온라인 강의와 원거리 교육의 비중이 점점 늘어나는 추세이다. LMS(Learning Management System)는 새로운 대학 환경변화의 중요한 도구이다. 대학도서관의 정보제공 기능도 대학교육 환경의 변화에 발맞추어 발전해 왔고, 이에 따라 이용자에게 효과적인 서비스를 제공하기 위한 LMS와 연계한 맞춤형 정보검색 시스템을 개발하기에 이르렀다. LMS와 연계한 도서관 서비스는 학생들의 연구형 과제해결을 위한 정보수집에 적합한 검색시스템과 유용한 정보들을 한곳에 모은 가상 분관의 기능을 제공하기에 더욱 사용되고 발전해야 한다. 이 시스템을 더욱 발전시키기 위해서는 Contents Management Systems의 사용과 과목별 접근방식으로 변환이 중요하다.
Gil-Sun Hong;Miso Jang;Sunggu Kyung;Kyungjin Cho;Jiheon Jeong;Grace Yoojin Lee;Keewon Shin;Ki Duk Kim;Seung Min Ryu;Joon Beom Seo;Sang Min Lee;Namkug Kim
Korean Journal of Radiology
/
제24권11호
/
pp.1061-1080
/
2023
Artificial intelligence (AI) in radiology is a rapidly developing field with several prospective clinical studies demonstrating its benefits in clinical practice. In 2022, the Korean Society of Radiology held a forum to discuss the challenges and drawbacks in AI development and implementation. Various barriers hinder the successful application and widespread adoption of AI in radiology, such as limited annotated data, data privacy and security, data heterogeneity, imbalanced data, model interpretability, overfitting, and integration with clinical workflows. In this review, some of the various possible solutions to these challenges are presented and discussed; these include training with longitudinal and multimodal datasets, dense training with multitask learning and multimodal learning, self-supervised contrastive learning, various image modifications and syntheses using generative models, explainable AI, causal learning, federated learning with large data models, and digital twins.
연합학습은, 데이터 샘플을 보유하는 다수의 분산 에지 디바이스 또는 서버들이 원본 데이터를 공유하지 않고 기계학습 문제를 해결하기 위해 협력하는 기술로서, 각 클라이언트는 소유한 원본 데이터를 로컬모델 학습에만 사용함으로써, 데이터 소유자의 프라이버시를 보호하고, 데이터 소유 및 활용의 파편화 문제를 해결할 수 있다. 연합학습을 위해서는 통계적 이질성 및 시스템적 이질성 문제 해결이 필수적이며, 인공지능 모델 정확도와 시스템 성능을 향상하기 위한 다양한 연구가 진행되고 있다. 최근, 중앙서버 의존형 연합학습의 문제점을 극복하고, 데이터 무결성 및 추적성과 데이터 소유자 및 연합학습 참여자에게 보상을 효과적으로 제공하기 위한, 블록체인 융합 연합학습기술이 주목받고 있다. 본 연구에서는 이더리움 기반 블록체인 인프라와 호환되는 연합학습 레퍼런스 아키텍처를 정의 및 구현하고, 해당 아키텍처의 실용성과 확장성을 검증하기 위하여 대표적인 연합학습 알고리즘과 데이터셋에 대한 실험을 수행하였다.
본 논문은 개인의 정보를 외부로 유출하지 않고, 소비자 방송 수신 단말 장치에 저장된 데이터를 이용하여 머신 러닝 모델을 학습하고, 소비자가 원하는 맞춤 방송 정보를 제공하는 시스템을 구글의 연합 학습[1] 을 기반한 설계에 관한 것이다. 이를 위하여, 소비자 사용 패턴 및 행동 데이터를 수집하고 저장하며 머신 러닝 학습을 진행 하는 단말 구조와 단말에서 생성된 학습 모델 파라미터 정보를 수집하고 평균화 하는 중앙 서버의 구조를 연구하고, 연합 학습을 이용한 학습 정보를 이용하여 개인 맞춤형 방송 정보를 제공하는 시스템을 연구한다.
최근 대두된 환경문제로 인해 다양한 재생 에너지의 실리적인 활용 방법에 귀추가 주목되고 있다. 특히 '그린뉴딜', 'K-RE100' 등 정부 주도의 정책으로 태양광 발전 시장 규모가 확대되면서, 소규모 발전 사업자의 태양광 발전 참여율도 매년 증가 추세를 보이고 있다. 이로 인해 소규모 발전 사업자의 수익을 산정하는 전력 중개 시스템의 태양광 발전 예측은 에너지 시장의 핵심요소로 부각되었다. 하지만 전력 중개용 태양광 발전 예측에는 기후의 간헐성으로 인한 예측 정확도 감소, 소규모 발전 사업자의 개인정보 보호 등 제약이 존재한다. 이 논문에서는 전력 중개용 태양광 발전 예측의 제약을 해소하고, 전력 중개 활성화를 지원키 위한 CNN-LSTM 기반 연합학습 기법을 제안한다.
최근 산업 현장에도 작업자들의 안전사고를 방지하기 위하여 인공지능 기법을 활용한 안전관리 시스템들이 도입되었다. 그러나 기존의 인공지능 기법을 활용한 방식은 데이터가 중앙 서버에 집중된 형태로 데이터 이동시 작업자의 민감 정보에 대한 보호가 어려울 뿐 아니라 대량의 데이터 발생 시 전체 시스템에 장애가 발생할 수 있어 이는 빠른 대응 프로세스가 필요한 산업 현장에 큰 영향을 줄 수 있다. 본 논문에서는 연합학습 기법을 적용하여 중앙 서버의 스트레스를 낮추어 작업자의 위험 상황에 빠른 대응이 가능하고, 작업자의 헬스 케어 데이터 같은 작업자의 민감 정보도 보호할 수 있는 시스템 설계를 제안한다.
현대 사회에서 인공지능은 다양한 분야에서 사용되며 발전하고 있다. 특히 의료, 공업, 경제, 농업, 정치 등에 영향을 미치며, 데이터 프라이버시 문제가 빈번히 발생한다. 이를 해결하기 위해 연합학습이 제안되었는데, 이는 로컬 디바이스에서 학습한 모델만을 중앙 서버로 전송하여 프라이버시를 보장하고 효율성을 높인다. 하지만 연합학습은 중앙 서버를 필요로 하므로 탈중앙적인 환경에서는 사용할 수 없는 단점이 있다. 이를 보완하기 위해 본 논문에서는 서버가 없는 다양한 환경에서 연합학습을 적용할 수 있는 비-완전 연결 분산형 연합학습 알고리즘을 소개한다. 비-완전 연결 분산형 연합학습 알고리즘은 모든 노드가 서로 연결 되어있는 상태가 아닌 특정 노드와만 연결 되어있는 형태로 대부분의 실전 분산형 환경에서 사용할 수 있다. 본 방식의 학습 정확도는 일반적인 머신러닝의 정확도와 비교하여 준수한 성능을 보여주고 있다.
엣지-클라우드 통신네트워크에서의 지속 가능한 사이버 보안 솔루션을 개발하기 위한 연구는 중요성을 갖는다. 최근의 기술 발전으로 인해 엣지 디바이스와 클라우드 서비스 간의 통신이 활발해지면서 보안 위협이 증가하고 있다. 이에 따라 연합 강화 학습과 같은 첨단 기술을 활용하여 보안 취약점을 탐지하고 대응하는 것이 중요하다. 본 논문에서는 엣지-클라우드 환경에서의 보안 취약점을 식별하고 대응하기 위해 연합 강화 학습을 기반으로 한 솔루션을 제안한다. 이를 통해 네트워크의 안전성을 보장하고 사이버 공격에 대응할 수 있는 기술을 개발하기 위해, 엣지-클라우드 환경에서의 보안 취약점을 식별하고 대응하기 위해 연합 강화 학습 기반으로 한 솔루션을 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.