• Title/Summary/Keyword: Fed-batch cultivation

Search Result 95, Processing Time 0.031 seconds

회분식과 유가식 배양에 의한 Motierella alpina로부터의 Arachidonic acid의 생산

  • Hwang, Byeong-Hui;Park, Chang-Yeol;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.378-381
    • /
    • 2001
  • In the batch culture experiments, the addition of $MnSO_4$, was examined in flask culture, and then the optimal amounts of $MnSO_4$ was investigated in 2.5- L jar-fermenter. As a results, 0.005% $MnSO_4$ was found to enhance the ARA yield of 1.14- fold. Also the addition of $KH_2PO_4_4$ was investigated in 2.5-L jar-fermenter and the ARA yield was enhanced 1.20-fold. Fed batch culture study shown a relatively high productivity of cell mass (62.1 g/L) and ARA content (12.0 g/L) when 14% ammonia solution were alternatively used to control the pH and nitrogen source in the cultivation period.

  • PDF

Isolation of Microorganism with HIgh Productivity and Cultivation Optimization for Lactic Acid Production (고생산성 젖산생성균 분리 및 배양 최적화)

  • Cho, Kyu-Hong;Cho, Yun-Kyung;Hong, Seung-Suh;Lee, Hyun-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.6-11
    • /
    • 1995
  • In order to screen microorganism producing lactic acid with high productivity from nature, we used a medium containing 100 g/l glucose and selected several microorganisms producing more than 80 g/l L-lactic acid. We investigated their physiological characteristics and compared them. The best microorganism was identified as Lactobacillus casei subsp. rhamnosus. The optimum pH for growth and production of lactic acid was 6.0 and this strain showed the highest growth rate at around 30$\circ$C , but the optimum temperature for lactic acid production was 45$\circ$C . The growth was inhibited proportionally from 50 g/l to 300 g/l of glucose and the maximal cell mass increased according to increasing the concentration of corn steep liquor (CSL) protein up to 30 g/l. In batch fermentation for lactic acid production, we produced 128 g/l L-lactic acid with 20 g/l CSL protein and 150 g/l glucose in 35 hours. In pH-stat fed-batch fermentation, we were able to produce 183 g/l L-lactic acid.

  • PDF

Production of the Fungal Lipid Containing ${\gamma}-Linolenic$ Acid from Mucor sp. KCTC 8405P (Mucor sp. KCTC 8405P에 의한 ${\gamma}-Linolenic$ Acid 함유 곰팡이 유지의 생산)

  • Park, Jong-Hyun;Shin, Hyun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.326-329
    • /
    • 1992
  • Mucor sp. KCTC 8405P was cultivated in a jar fermentor for the production of fungal lipid containing ${\gamma}-linolenic$ acid with feeding the glucose solution periodically. The transition of the fungal growth into the mycelial phase from yeast-like growth was achieved by pH shift after the first two day of cultivation in the low pH medium and then lipid accumulation was accelerated until the seven day of cultivation, when the glucose in the culture broth was almost consumed. With the culture conditions applied in this experiment, biomass of 99.3 g/l by the dry cell weight and the total extractable lipid of 38.0 g containing 3.5 g/l ${\gamma}-linolenic$ acid were obtained.

  • PDF

Enhanced Production of Avermectin B1a with Streptomyces avermitilis by Optimization of Medium and Glucose Feeding (배지 및 유가식 회분배양 최적화에 의한 Streptomyces avermitilist 의 Avermectin B1a 생산성 향상)

  • 이병규;김종균;강희일;이종욱
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.158-163
    • /
    • 2001
  • The effect of phosphate on the production of avermectin B1a was studied. Response surface methodology was applied to optimize the concentration of organic nitrogen sources. The portion of B1b in total avermectins was decreased from 5.8% to 3.0% by the addition of 1.5 g/ι inorganic phosphate to the production medium. Among organic nitrogen sources, soybean meal was the most effective on avermectin biosynthesis. Results showed that B1a productivity was increased by 44.8% in a laboratory scale fermenter cultivation of Streptomyces avermitilis YA99-40 through fed-batch process. A maximal B1a productivity was obtained by repeated 30 and 20 g/ι of glucose feeding at 136 and 206 hour, respectively. The B1a productivity was increased by 86.3% and the proportion of B1a in the total avermectins was improved from 38% to 45% with respect to the control process. These results would be very useful for enhancing productivity of B1a in an up-scaled processes.

  • PDF

Optimization for Lacticin SA72 Production by Lactococcus lactis SA72 Isolated from Jeot-gal. (젓갈에서 분리한 Lactococcus lactis SA72에 의한 Lacticin SA72의 생산 최적화)

  • 백현동;구경모;김진곤;이나경
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.46-50
    • /
    • 2003
  • Lactococcus lactis SA72 from Jeot-gal (Korean traditional fermented fish foods) produces lacticin SA72. The influence of several parameters on the fermentative production of lacticin SA72 by Lactococcus lactis SA72 was studied. MRS medium among several media was selected for enhanced bacteriocin production. The mean growth rate and bacteriocin productivity of L. lactis SA72 increased as the initial pH of the media increases. The highest lacticin SA72 activity was detected 3,200 AU/ml at pH 6.0, $32^{\circ}C$, and 1% (inoculum size, v/v) in the jar fermenter. Enhanced production of lacticin SA72 was investigated by a fed-batch cultivation with the intermittent feeding of the concentrated glucose solution. Under the optimized conditions, lacticin SA72 activity finally reached to 6,400 AU/ml.

Production of Aminoglycoside-3'-Phosphotransferase by the Fed-Batch Cultivation of Mutant Obtained from E. coli ATCC 21990 (E.coli ATCC 21990 변이주의 유가배양법에 의한 Aminoglycoside-3'-Phosphotransferase 생산)

  • 김기태;김학주;김계원;나규흠;양중익;김수일
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.491-496
    • /
    • 1991
  • To maximize the production of aminoglycoside-3'-phosphotransferase of E. coli ATCC 21990 carrying R factor which encodes aminoglycoside-3'-phosphotransferase (APH(3')) phosphorylating the 3'-hydroxyl group of aminoglycoside, mutants M1 and M2, media composition and several factors affecting the enzyme production during fermentation were studied. Although the specific activity of APH(3') produced by a mutant M1 was increased as much as four times than that of E. coii ATCC 21990, the growth rate was decreased. The increase of the enzyme production was obtained by increased biomass during fermentation. A mutant M2 was obtained to increase the cell growth rate. Mutant M2 cells were cultivated with optimal media and pure oxygen gas in a fed-batch mode of fermentor operation. The specific activity of APH(3') was decreased, but total enzyme activity of APH(3') was increased as much as two point five times than that of mutant MI.

  • PDF

Development of a High-Titer Culture Medium for the Production of Cholesterol by Engineered Saccharomyces cerevisiae and Its Fed-Batch Cultivation Strategy

  • Wang, Ling-Xu;Zheng, Gao-Fan;Xin, Xiu-Juan;An, Fa-Liang
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1178-1185
    • /
    • 2022
  • Steroids are a class of compounds with cyclopentane polyhydrophenanthrene as the parent nucleus, and they usually have unique biological and pharmacological activities. Most of the biosynthesis of steroids is completed by a series of enzymatic reactions starting from cholesterol. Synthetic biology can be used to synthesize cholesterol in engineered microorganisms, but the production of cholesterol is too low to further produce other high-value steroids from cholesterol as the raw material and precursor. In this work, combinational strategies were established to increase the production of cholesterol in engineered Saccharomyces cerevisiae RH6829. The basic medium for high cholesterol production was selected by screening 8 kinds of culture media. Single-factor optimization of the carbon and nitrogen sources of the culture medium, and the addition of calcium ions, zinc ions and citric acid, further increased the cholesterol production to 192.53 mg/l. In the 5-L bioreactor, through the establishment of strategies for glucose and citric acid feeding and dissolved oxygen regulation, the cholesterol production was further increased to 339.87 mg/l, which was 734% higher than that in the original medium. This is the highest titer of cholesterol produced by microorganisms currently reported. The fermentation program has also been conducted in a 50-L bioreactor to prove its stability and feasibility.

Study on the variation of cellular physiology of Escherichia coli during high cell density cultivation using 2-dimensional gel electrophoresis

  • Yun, Sang-Seon;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.219-222
    • /
    • 2000
  • Physiological changes of Escherichia coli during the fed-batch fermentation process were characterized in this study. Overall cellular protein samples prepared at the different stage of fermentation were separated by 2-dimensional gel electrophoresis (2-DE), and differently expressed 15 proteins, Phosphotransferase enzyme I, GroEL, Trigger factor, ${\beta}$ subunit of ATP synthase, Transcriptional regulator KDGR, Phosphoglycerate mutase 1, Inorganic pyrophosphatase, Serine Hydroxymethyl-transferase, ${\alpha}$ subunit of RNA polymerase, Elongation factor Tu, Elongation factor Ts, Tyrosine-tRNA ligase, DnaK suppressor protein, Transcriptional elongation factor, 30S ribosomal protein S6 were identified using matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF MS). When bacterial cells grow to high cell density, and IPTG-inducible heterologous protein is produced, expression level of overall cellular proteins was decreased. According to their functions in the cell, identified proteins were classified into three groups, proteins involved in transport process, small-molecule metabolism, and synthesis and modification of macromolecules.

  • PDF

Combined analysis of transcriptome and proteome for high cell density cultivation of Escherichia coli

  • Yun, Seong-Ho;Han, Mi-Jeong;Im, Geun-Bae;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.845-848
    • /
    • 2001
  • For understanding physiology and metabolism under various culture conditions, combined analysis of transcriptome and proteome is attractable way. We have manufactured DNA microarray containing 2,850 genes including all functionally known and putative ones. In this study, we report analysis of transcriptome and proteome during the high cell density culture of E. coli by using DNA microarray and 2-DE. Fed-batch fermentation of E. coli was carried out by exponential feeding of nutrients until the maximum cell density reached 74 g dry cell weight/L (g DCW/L). Changes in transcriptome and proteome during the HCDC are analyzed qualitatively and quantitatively to provide their physiological and metabolic meanings.

  • PDF

Gene Cloning, High-Level Expression, and Characterization of an Alkaline and Thermostable Lipase from Trichosporon coremiiforme V3

  • Wang, Jian-Rong;Li, Yang-Yuan;Liu, Danni
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.845-855
    • /
    • 2015
  • The present study describes the gene cloning and high-level expression of an alkaline and thermostable lipase gene from Trichosporon coremiiforme V3. Nucleotide analysis revealed that this lipase gene has an open reading frame of 1,692 bp without any introns, encoding a protein of 563 amino acid residues. The lipase gene without its signal sequence was cloned into plasmid pPICZαA and overexpressed in Pichia pastoris X33. The maximum lipase activity of recombinant lipase was 5,000 U/ml, which was obtained in fed-batch cultivation after 168 h induction with methanol in a 50 L bioreactor. The purified lipase showed high temperature tolerance, and being stable at 60℃ and kept 45% enzyme activity after 1 h incubation at 70℃. The stability, effects of metal ions and other reagents were also determined. The chain length specificity of the recombinant lipase showed high activity toward triolein (C18:1) and tripalmitin (C16:0).