• 제목/요약/키워드: Fecal digestibility

검색결과 291건 처리시간 0.022초

Effects of Dietary Synbiotics from Anaerobic Microflora on Growth Performance, Noxious Gas Emission and Fecal Pathogenic Bacteria Population in Weaning Pigs

  • Lee, Shin Ja;Shin, Nyeon Hak;Ok, Ji Un;Jung, Ho Sik;Chu, Gyo Moon;Kim, Jong Duk;Kim, In Ho;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권8호
    • /
    • pp.1202-1208
    • /
    • 2009
  • Synbiotics is the term used for a mixture of probiotics (live microbial feed additives that beneficially affects the host animal) and prebiotics (non-digestible food ingredients that beneficially affect the organism). This study investigated the effect of probiotics from anaerobic microflora with prebiotics on growth performance, nutrient digestibility, noxious gas emission and fecal microbial population in weaning pigs. 150 pigs with an initial BW of 6.80${\pm}$0.32 kg (20 d of age) were randomly assigned to 5 dietary treatments as follows: i) US, basal diet+0.15% antibiotics (0.05% oxytetracycline 200 and 0.10% tiamulin 38 g), ii) BS, basal diet+0.2% synbiotics (probiotics from bacteria), iii) YS, basal diet+0.2% synbiotics (probiotics from yeast), iv) MS, basal diet+0.2% synbiotics (probiotics from mold), v) CS, basal diet+0.2% synbiotics (from compounds of bacteria, yeast and mold). The probiotics were contained in $10^{9}$ cfu/ml, $10^{5}$ cfu/ml and $10^{3}$ tfu/ml of bacteria, yeast and molds, respectively. The same prebiotics (mannan oligosaccharide, lactose, sodium acetate and ammonium citrate) was used for all the synbiotics. Pigs were housed individually for a 16-day experimental period. Growth performance showed no significant difference between antibiotic treatments and synbiotics-added treatments. The BS treatment showed higher (p<0.05) dry matter (DM) and nitrogen digestibility while ether extract and crude fiber digestibility were not affected by the dietary treatment. Also, the BS treatment decreased (p<0.05) fecal ammonia and amine gas emissions. Hydrogen sulfide concentration was also decreased (p<0.05) in BS, YS and MS treatments compared to other treatments. Moreover, all the synbioticsadded treatments increased fecal acetic acid concentration while the CS treatment had lower propionic acid concentration than the US treatment (p<0.05) gas emissions but decreased in fecal propionate gas emissions. Total fecal bacteria and Escherichia coli populations did not differ significantly among the treatments, while the Shigella counts were decreased (p<0.05) in synbiotics-included treatment. Fecal bacteria population was higher in the YS treatment than other treatments (p<0.05). The BS treatment had higher yeast concentration than YS, MS and CS treatments, while US treatment had higher mold concentrations than MS treatment (p<0.05). Therefore, the results of the present study suggest that synbiotics are as effective as antibiotics on growth performance, nutrient digestibility and fecal microflora composition in weaning pigs. Additionally, synbiotics from anaerobic microflora can decrease fecal noxious gas emission and synbiotics can substitute for antibiotics in weaning pigs.

The Effect of Bacillus-based Feed Additive on Growth Performance, Nutrient Digestibility, Fecal Gas Emission, and Pen Cleanup Characteristics of Growing-finishing Pigs

  • Upadhaya, S.D.;Kim, S.C.;Valientes, R.A.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권7호
    • /
    • pp.999-1005
    • /
    • 2015
  • Bacillus-based feed additive was evaluated for its efficacy on growth performance, nutrient digestibility, fecal gas emission, and the consumption of time and amount of water for cleaning the pen of growing finishing pigs. A total of 120 growing pigs ($23.59{\pm}1.41kg$) were used in a 16-wk feeding trial. Pigs were randomly distributed into 1 of 2 treatments on the basis of body weight and sex. There were 12 replicate pens per treatment, with 5 pigs (3 barrows and 2 gilts) per pen. Dietary treatments were CON which was basal diet, and T1 which was CON+62.5 ppm microbial feed additive that provided $1.47{\times}10^8cfu$ of Bacillus organisms per gram of supplement. During the weeks 0 to 6, average daily gain (ADG) in T1 treatment was higher (p<0.05) than CON, but no improvement in average daily feed intake (ADFI) and feed efficiency (G:F) was noted. During 6 to 16 weeks, no difference (p>0.05) was noted in growth performance. However, ADG was improved (p<0.05) and overall ADFI tended (p = 0.06) to improve in T1 compared with CON. At week 6, the co-efficient of apparent total tract digestibility (CATTD) of dry matter (DM) nitrogen (N) was increased (p<0.05) in T1 compared with CON. Fecal $NH_3$ emission was decreased (p<0.05) in T1 compared with CON, at the end of 6th and 15th weeks. The time and water consumed for washing the pens were decreased (p<0.05) in T1 compared with CON. In conclusion, supplementation with Bacillus-based feed additive could improve the overall growth performances, increase the CATTD of DM and decrease the fecal $NH_3$ content and the time and water consumed in washing the pens for growing-finishing pigs.

Effects of Resveratrol and Essential Oils on Growth Performance, Immunity, Digestibility and Fecal Microbial Shedding in Challenged Piglets

  • Ahmed, S.T.;Hossain, M.E.;Kim, G.M.;Hwang, J.A.;Ji, H.;Yang, C.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권5호
    • /
    • pp.683-690
    • /
    • 2013
  • A study was conducted to evaluate the effects of resveratrol and essential oils from medicinal plants on the growth performance, immunity, digestibility, and fecal microbial shedding of weaned piglets. A total of 48 weaned piglets (8 kg initial weight, 28-d-old) were randomly allotted to four dietary treatments with 3 replications of 4 piglets each. The dietary treatments were NC (negative control; basal diet), PC (positive control; basal diet+0.002% apramycin), T1 (basal diet+0.2% resveratrol), and T2 (basal diet+0.0125% essential oil blend). All piglets were orally challenged with 5 ml culture fluid containing $2.3{\times}10^8$ cfu/ml of Escherichia coli KCTC 2571 and $5.9{\times}10^8$ cfu/ml Salmonella enterica serover Typhimurium. The PC group (p<0.05) showed the highest average daily gain (ADG) and average daily feed intake (ADFI) throughout the experimental period, although feed conversion ratio (FCR) was improved in the T1 group (p>0.05). Serum IgG level was increased in the T1 group, whereas TNF-${\alpha}$ levels was reduced in the supplemented groups compared to control (p<0.05). The PC diet improved the dry matter (DM) digestibility, whereas PC and T2 diets improved nitrogen (N) digestibility compared to NC and T1 diets (p<0.05). Fecal Salmonella and E. coli counts were reduced in all treatment groups compared to control (p<0.05). Fecal Lactobacillus spp. count was increased in the T2 group compared to others (p<0.05). Dietary treatments had no significant effect on fecal Bacillus spp. count throughout the entire experimental period. Based on these results, resveratrol showed strong potential as antibiotic alternatives for reversing the adverse effects of weaning stress on growth performance, immunity and microbial environment in E. coli and Salmonella-challenged piglets.

Effect of Dietary Copper Sources (Cupric Sulfate and Cupric Methionate) and Concentrations on Performance and Fecal Characteristics in Growing Pigs

  • Huang, Y.;Zhou, T.X.;Lee, J.H.;Jang, H.D.;Park, J.C.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권6호
    • /
    • pp.757-761
    • /
    • 2010
  • This study was conducted to assess the effects of organic and inorganic copper on performance in growing pigs. A total of 100 pigs, average age 63 d and initial body weight 21.46${\pm}$1.13 kg, were assigned to five treatment groups. Dietary treatments included i) CON (basal diet, 0 ppm Cu), ii) T1 (basal diet with 67 ppm Cu as cupric sulfate, $CuSO_4$), iii) T2 (basal diet with 134 ppm Cu as $CuSO_4$), iv) T3 (basal diet with 67 ppm Cu as cupric methionate, CuMet) and v) T4 (basal diet with 134 ppm Cu as CuMet). Throughout the entire experimental period, ADG (average daily gain), ADFI (average daily feed intake) and G/F (gain: feed) ratios showed no significant differences. The dry matter digestibility was improved in the T1, T2, T3, and T4 treatments (p<0.05), as compared with CON. Nitrogen digestibility was improved in the T3 treatment group as compared with CON (p<0.05). As compared with the T1 treatment group, fecal pH values were improved in the CON, T3, and T4 treatment groups (p<0.05). Fecal Cu concentrations were significantly lower in the CON, T3, and T4 treatment groups than in T1 and T2 (p<0.05). The incidence of diarrhea was reduced when the pigs were fed on the T2, T3, and T4 diets as compared with CON. In conclusion, diets supplemented with 67 or 134 ppm Cu as CuMet may prove effective in improving nutrient digestibility and fecal pH value in growing pigs, and fecal Cu concentrations may be reduced by CuMet supplementation.

Effects of fermented soybean meal on growth performance, nutrients digestibility, blood profile and fecal microflora in weaning pigs

  • Ding, Zhenyu;Chang, Kyung Hoon;Kim, Inho
    • 농업과학연구
    • /
    • 제47권1호
    • /
    • pp.1-10
    • /
    • 2020
  • A nutrition study on weaned pigs using fermented soybean meal was done to determine the effect on growth performance, nutrients digestibility, blood profile and fecal microflora. A total of 100 weaning pigs with an initial average body weight (BW) of 8.27 ± 1.10 kg were randomly allotted into 1 of 2 dietary treatments in a 6-week feeding trial. There were 10 replicate pens in each treatment with 5 pigs per pen. The dietary treatments included: 1) control: Basal diet (CON); 2) fermented soybean meal (FSBM): Basal diet supplemented with 5% fermented soybean meal. The average daily feed intake (ADFI) was significantly improved (p < 0.05) with the dietary supplementation of the FSBM compared with the control meal during phase 2. The dietary supplementation with 5% FSBM had a significant effect (p < 0.05) on gain to feed ratio (G : F) during the overall experiment period. Collectively, the results of this study indicate that dietary supplementation of 5% fermented soybean meal improved the body weight and average daily gain (ADG), ADFI, and feed efficiency of the weaning pigs; however, there were no supplementation effects on total tract digestibility of dry matter (DM), nitrogen, energy, blood profile and fecal microflora.

한국인 일부 여대생에서 단백질 흡수 및 평형 (intake/Balanc of Dietary Protein in Korean College Women)

  • 오승호;최인선
    • 대한지역사회영양학회지
    • /
    • 제2권4호
    • /
    • pp.523-529
    • /
    • 1997
  • This study was conducted to obtain accurate data on the intake, digestibility and nitrogen balance of protein in Korean college women. Subjects were 8 female college students, aged from 21 to 23, and maintained their menu and life patterns regular during a 4- week study. The same amount of diet that the subjects had consumed, and feces and urine were collected and measured to extract their nitrogen content by Kjeldahl method. From this data, apparent digestibility and the body nitrogen balance were estimated by determing daily protein intake and excretion. The daily protein intake was 56.9$\pm$1.4g and daily fecal protein loss was 6.3$\pm$0.2g. The apparent digestibility of protein was 89.6$\pm$0.7$\%$. The daily nitrogen intake measured by Kjeldahl method was 9.43$\pm$0.2g. The urinary nitrogen excretion was 7.64$\pm$0.23g and fecal nitrogen excretion was 1.02$\pm$0.03g. The nitrogen balance indicated a positive balance of 0.45$\pm$0.18g. (Korean J Community Nutrition 2(4) : 523-529, 1997)

  • PDF

Effects of γ-aminobutyric acid and hydrochloric acid on growth performance, nutrient digestibility and fecal score of growing pigs

  • Ding, Zhenyu;Kim, Inho
    • 농업과학연구
    • /
    • 제46권3호
    • /
    • pp.489-496
    • /
    • 2019
  • A study was conducted to determine the effects of feeding ${\gamma}$-aminobutyric acid (GABA) and hydrochloric acid (HCl) on the growth performance, nutrient digestibility and fecal score in growing pigs. Ninety Duroc ${\times}$ (Landrace ${\times}$ Large Yorkshire) growing pigs with an average initial body weight (BW) of $25.51{\pm}1.63kg$ were randomly allotted to three treatment groups with 6 replications of 5 pigs per replicate pen for each treatment in a 6-week trial period. The treatments were as follows: 1) basal diet (CON); 2) basal diet with 0.05% GABA and 3) basal diet with 1% of a 10% HCl solution. The results showed that GABA supplementation significantly increased the average daily gain (ADG) (p < 0.05) compared with the control during week 4 and the overall experiment period (0 to 6 weeks). However, HCl supplementation had a numerical increase in the ADG compared with the control. The total tract digestibility of dry matter (DM) was greater in GABA group than the CON (p < 0.05). The supplementation of GABA and HCl in the diet of growing pigs had no significant effect on the fecal scores compared with the CON. Experimental results show that supplementation of 0.05% GABA in the diet of growing pigs had a positive effect on the ADG and DM digestibility in growing pigs.

Effects of Fermented Soy Protein on Nitrogen Balance and Apparent Fecal and Ileal Digestibility in Weaned Pigs

  • Yoo, J.S.;Jang, H.D.;Cho, J.H.;Lee, J.H.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권8호
    • /
    • pp.1167-1173
    • /
    • 2009
  • This study was conducted to evaluate the effects of providing fermented soy protein to weaned pigs on nitrogen balance and apparent fecal and apparent ileal digestibility (AID) of AA. Four weaned ((Yorkshire${\times}$Landrace)${\times}$Duroc) barrows (BW = 6.58${\pm}$0.98 kg), surgically fitted with a simple T-cannula approximately 15 cm prior to the ileo-cecal junction, were fed four diets according to 4${\times}$4 Latin square design. Diets were a basal diet supplemented with one of the following: 3% SDPP (spray dried plasma protein), 5% RBP (soy protein fermented by Lactobacillus spp.), 5% PSP (soy protein fermented by Aspergillus oryzae and Bacillus subtilis), and 2.5% RPP (2.5% RBP+2.5% PSP). No differences were observed in DM and N intakes among treatments. However, the level of urine excretion was greater in the RPP group than in the PSP group. Additionally, fecal DM excretion, fecal N concentration and fecal N excretion were increased in the RBP, PSP and RPP groups when compared with the SDPP group (p<0.05). Furthermore, total excretion was increased in the RPP group when compared with the PSP group (p<0.05). In addition, N absorption and the N absorption ratio were higher in the SDPP group than in the RPP group (p<0.05). Moreover, the DM and N digestibilities were lower in the RBP, PSP and RPP groups than in the SDPP group (p<0.05), and the ash and energy digestibilities were higher in the SDPP and RBP groups than in the PSP and RPP groups (p<0.05). However, no significant differences were observed in the DM, N, Ash, Ca, P or ileal digestibilities among treatments, although the energy digestibility was higher in the SDPP group than the RBP group (p<0.05). In addition, the apparent ileal digestibilities of essential amino acids (Arg, His, Iso, Leu, Lys, Phe, Thr, and Val) were significantly higher in the SDPP group than in the other groups (p<0.05), and the levels of Ala, Cys, Glu and Try were greater in the SDPP treatment group than the RBP, PSP and RPP groups (p<0.05). Additionally, the levels of Asp, Gly and Ser were higher in the SDPP group than the PSP and RPP groups, and the level of Pro was higher in the SDPP group than the RPP group (p<0.05). Finally, total non-essential amino acid and total amino acid digestibility were higher in the SDPP group than in the other treatments (p<0.05). Taken together, the results of this study indicate that animal protein is more bioavailable than plant protein. However, the N absorption ratio and ileal digestibility were found to be similar in the SDPP and RBP groups.

Effects of Dietary Bacillus-based Probiotic on Growth Performance, Nutrients Digestibility, Blood Characteristics and Fecal Noxious Gas Content in Finishing Pigs

  • Chen, Y.J.;Min, B.J.;Cho, J.H.;Kwon, O.S.;Son, K.S.;Kim, H.J.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권4호
    • /
    • pp.587-592
    • /
    • 2006
  • This study was conducted to evaluate the effects of supplementation with bacillus-based probiotic (Bacillus subtilis, $1.0{\times}10^7CFU/g$; Bacillus coagulans, $2.0{\times}10^6CFU/g$ and Lactobacillus acidophilus, $5.0{\times}10^6CFU/g$) on finishing pigs growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content and to determine the optimal addition level of this probiotic preparation. A total of forty eight pigs with an initial body weight (BW) of $90.60{\pm}2.94kg$ were allotted to three dietary treatments (four pigs per pen with four pens per treatment) according to a randomized complete block design. Dietary treatment included: 1) CON (basal diet); 2) BP1 (basal diet+bacillus-based probiotic 0.1%) and 3) BP2 (basal diet+bacillus-based probiotic 0.2%). The experiment lasted 6 weeks. Through the entire experimental period, ADG was improved by 11% (p<0.05) in pigs fed diets supplemented with 0.2% bacillus-based probiotic compared to pigs fed the basal diet. ADFI and gain/feed were not affected by the treatments (p>0.05). Supplementation of bacillus-based probiotic did not affect either DM and N digestibilities or blood characteristics (p>0.05) of pigs. Fecal ammonia nitrogen ($NH_3$-N) measured at the end of experiment was reduced (p<0.05) when pigs were fed the diet with 0.2% bacillus-based probiotic. Fecal butyric acid concentration also decreased significantly (p<0.05) whereas acetic acid and propionic acid concentrations were not affected (p>0.05) when pigs were fed diets with added bacillus-based probiotic. In conclusion, dietary supplementation of bacillus-based probiotic can increase growth performance and decrease fecal noxious gas content concentration.

Effects of Dietary Probiotic on Growth Performance, Nutrients Digestibility, Blood Characteristics and Fecal Noxious Gas Content in Growing Pigs

  • Chen, Y.J.;Son, K.S.;Min, B.J.;Cho, J.H.;Kwon, O.S.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권10호
    • /
    • pp.1464-1468
    • /
    • 2005
  • The aim of this study was to assess the effects of dietary complex probiotic (Lactobacillus acidophilus, $1.0{\times}10^7$ CFU/g; Saccharomyces cerevisae, $4.3{\times}10^6$ CFU/g; Bacillus subtilis $2.0{\times}10^6$ CFU/g) on growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content in growing pigs. Ninety [(Duroc${\times}$Yorkshire)${\times}$Landrace] pigs with the average initial BW of 39.75${\pm}$1.97 kg were allocated into three treatments by a randomized complete block design. There were five pens per treatment with six pigs per pen. Dietary treatments include: 1) CON (basal diet); 2) CP1 (basal diet+complex probiotic 0.1%) and 3) CP2 (basal diet+complex probiotic 0.2%). During the entire experimental period of 6 weeks, results showed that addition of complex probiotic at the level of 0.2% to diet increased ADG significantly (p<0.05). Also, digestibilities of DM and N tended to increase, however, no significant differences were observed (p>0.05). Blood characteristics (IgG, Albumin, total protein, RBC, WBC and lymphocyte) of pigs were not affected (p>0.05) by complex probiotic supplementation. Fecal $NH_3$-N was decreased (11.8%) significantly by the addition of complex probiotic (p<0.05), but no effects were observed on fecal acetic acid, propionic acid and butyric acid concentrations (p>0.05). In conclusion, results in this experiment indicated that dietary complex probiotic supplementation had a positive effect on growing pigs performance and could decrease fecal $NH_3$-N concentration.