Journal of International Society for Simulation Surgery
/
v.2
no.1
/
pp.7-9
/
2015
Purpose In the many face-related application such as head pose estimation, 3D face modeling, facial appearance manipulation, the robust and fast facial feature extraction is necessary. We present the facial feature extraction method based on shape regression and feature selection for real-time facial feature extraction. Materials and Methods The facial features are initialized by statistical shape model and then the shape of facial features are deformed iteratively according to the texture pattern which is selected on the feature pool. Results We obtain fast and robust facial feature extraction result with error less than 4% and processing time less than 12 ms. The alignment error is measured by average of ratio of pixel difference to inter-ocular distance. Conclusion The accuracy and processing time of the method is enough to apply facial feature based application and can be used on the face beautification or 3D face modeling.
Journal of Institute of Control, Robotics and Systems
/
v.21
no.3
/
pp.265-275
/
2015
This paper describes extraction methods of five different types of geometrical features (line, arc, corner, polynomial curve, NURBS curve) from the obtained raw data by using a two-dimensional laser range finder (LRF). Natural features with their covariance matrices play a key role in the realization of feature-based simultaneous localization and mapping (SLAM), which can be used to represent the environment and correct the pose of mobile robot. The covariance matrices of these geometrical features are derived in detail based on the raw sensor data and the uncertainty of LRF. Several comparison are made and discussed to highlight the advantages and drawbacks of each type of geometrical feature. Finally, the extracted features from raw sensor data obtained by using a LRF in an indoor environment are used to validate the proposed extraction methods.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1996.10a
/
pp.294-297
/
1996
This paper proposes the method to recognize of time series data based on the chaotic feature extraction. Features extract from time series data using the chaotic time series data analysis and the pattern recognition process is using a neural network classifier. In experiment, EEG(electroencephalograph) signals are extracted features by correlation dimension and Lyapunov experiments, and these features are classified by multilayer perceptron neural networks. Proposed chaotic feature extraction enhances recognition results from chaotic time series data.
This paper addresses the approach to extract linear features from satellite imagery using an efficient segmentation method. The extraction of linear features from satellite images has been the main concern of many scientists. There is a need to develop a more capable and cost effective method for the Iranian map revision tasks. The conventional approaches for producing, maintaining, and updating GIS map are time consuming and costly process. Hence, this research is intended to investigate how to obtain linear features from SPOT satellite imagery. This was accomplished using a discontinuity-based segmentation technique that encompasses four stages: low level bottom-up, middle level bottom-up, edge thinning and accuracy assessment. The first step is geometric correction and noise removal using suitable operator. The second step includes choosing the appropriate edge detection method, finding its proper threshold and designing the built-up image. The next step is implementing edge thinning method using mathematical morphology technique. Lastly, the geometric accuracy assessment task for feature extraction as well as an assessment for the built-up result has been carried out. Overall, this approach has been applied successfully for linear feature extraction from SPOT image.
Kim, Seo-Jun;Jeong, Eui-Chul;Lee, Sang-Min;Song, Young-Rok
The Transactions of The Korean Institute of Electrical Engineers
/
v.61
no.5
/
pp.757-762
/
2012
In this paper, the multi feature extraction algorithm for estimation of wrist movements based on Electromyogram(EMG) is proposed. For the extraction of precise features from the EMG signals, the difference absolute mean value(DAMV), the mean absolute value(MAV), the root mean square(RMS) and the difference absolute standard deviation value(DASDV) to consider amplitude characteristic of EMG signals are used. We figure out a more accurate feature-set by combination of two features out of these, because of multi feature extraction algorithm is more precise than single feature method. Also, for the motion classification based on EMG, the linear discriminant analysis(LDA), the quadratic discriminant analysis(QDA) and k-nearest neighbor(k-NN) are used. We implemented a test targeting twenty adult male to identify the accuracy of EMG pattern classification of wrist movements such as up, down, right, left and rest. As a result of our study, the LDA, QDA and k-NN classification method using feature-set with MAV and DASDV showed respectively 87.59%, 89.06%, 91.75% accuracy.
In a cloud environment, performance degradation, or even downtime, of virtual machines (VMs) usually appears gradually along with anomalous states of VMs. To better characterize the state of a VM, all possible performance metrics are collected. For such high-dimensional datasets, this article proposes a feature extraction algorithm based on unsupervised fuzzy linear discriminant analysis with kernel (UFKLDA). By introducing the kernel method, UFKLDA can not only effectively deal with non-Gaussian datasets but also implement nonlinear feature extraction. Two sets of experiments were undertaken. In discriminability experiments, this article introduces quantitative criteria to measure discriminability among all classes of samples. The results show that UFKLDA improves discriminability compared with other popular feature extraction algorithms. In detection accuracy experiments, this article computes accuracy measures of an anomaly detection algorithm (i.e., C-SVM) on the original performance metrics and extracted features. The results show that anomaly detection with features extracted by UFKLDA improves the accuracy of detection in terms of sensitivity and specificity.
This paper proposes avatar face generation system that uses shading mechanism and facial features extraction method of facial recognition. Proposed system generates avatar face similar to human face automatically using facial features that extracted from a photo. And proposed system is an approach which compose shade and facial features. Thus, it has advantages that can make more realistic avatar face similar to human face. This paper proposes new eye localization method, facial features extraction method, classification method for minimizing retrieval time, image retrieval method by similarity measure, and realistic avatar face generation method by mapping facial features with shaded face pane.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.48
no.5
/
pp.7-12
/
2011
In this papwer, we propose a new feature extraction method, named as Class-augmented Kernel Principal Component Analysis (CA-KPCA), which can extract nonlinear features for classification. Among the subspace method that was being widely used for feature extraction, Class-augmented Principal Component Analysis (CA-PCA) is a recently one that can extract features for a accurate classification without computational difficulties of other methods such as Linear Discriminant Analysis (LDA). However, the features extracted by CA-PCA is still restricted to be in a linear subspace of the original data space, which limites the use of this method for various problems requiring nonlinear features. To resolve this limitation, we apply a kernel trick to develop a new version of CA-PCA to extract nonlinear features, and evaluate its performance by experiments using data sets in the UCI Machine Learning Repository.
The Transactions of The Korean Institute of Electrical Engineers
/
v.58
no.5
/
pp.1025-1034
/
2009
In steel making production line, steel slabs are given a unique identification number. This identification number, Slab management number(SMN), gives information about the use of the slab. Identification of SMN has been done by humans for several years, but this is expensive and not accurate and it has been a heavy burden on the workers. Consequently, to improve efficiency, automatic recognition system is desirable. Generally, a recognition system consists of text localization, text extraction, character segmentation, and character recognition. For exact SMN identification, all the stage of the recognition system must be successful. In particular, the text localization is great important stage and difficult to process. However, because of many text-like patterns in a complex background and high fuzziness between the slab and background, directly extracting text region is difficult to process. If the slab region including SMN can be detected precisely, text localization algorithm will be able to be developed on the more simple method and the processing time of the overall recognition system will be reduced. This paper describes about the slab region localization using SIFT(Scale Invariant Feature Transform) features in the image. First, SIFT algorithm is applied the captured background and slab image, then features of two images are matched by Nearest Neighbor(NN) algorithm. However, correct matching rate can be low when two images are matched. Thus, to remove incorrect match between the features of two images, geometric locations of the matched two feature points are used. Finally, search rectangle method is performed in correct matching features, and then the top boundary and side boundaries of the slab region are determined. For this processes, we can reduce search region for extraction of SMN from the slab image. Most cases, to extract text region, search region is heuristically fixed [1][2]. However, the proposed algorithm is more analytic than other algorithms, because the search region is not fixed and the slab region is searched in the whole image. Experimental results show that the proposed algorithm has a good performance.
Most of previous visual attention system finds attention regions based on saliency map which is combined by multiple extracted features. The differences of these systems are in the methods of feature extraction and combination. This paper presents a new system which has an improvement in feature extraction method of color and motion, and in weight decision method of spatial and temporal features. Our system dynamically extracts one color which has the strongest response among two opponent colors, and detects the moving objects not moving pixels. As a combination method of spatial and temporal feature, the proposed system sets the weight dynamically by each features' relative activities. Comparative results show that our suggested feature extraction and integration method improved the detection rate of attention region.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.