• Title/Summary/Keyword: Feature-map

Search Result 814, Processing Time 0.022 seconds

Nomenclature of the Seas Around the Korean Peninsula Derived From Analyses of Papers in Two Representative Korean Ocean and Fisheries Science Journals: Present Status and Future (국내 대표 해양·수산 과학논문 분석을 통한 우리나라 주변 바다 이름표기에 대한 제언)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.3
    • /
    • pp.125-151
    • /
    • 2018
  • We grouped the names attributed to the seas surrounding the Korean Peninsula in maps published in two major Korean ocean and fisheries science journals over the period from 1998 to 2017: the Journal of the Korean Society of Oceanography (The Sea) and the Korean Journal of Fisheries and Aquatic Science (KFAS). The names attributed to these seas in maps of journal paper broadly were classified into three groupings: (1) East Sea and Yellow Sea; (2) East Sea, Yellow Sea, and South Sea; or (3) East Sea, West Sea and South Sea. The name 'East Sea' was dominantly used for the waters between Korea and Japan. In contrast, the water between Korea and China has been mostly labelled as 'Yellow Sea' but sometimes labelled as 'West Sea'. The waters between the south coast of Korea and Kyushu, Japan were labelled as either 'Korea Strait' or 'South Sea'. This analysis on sea names in the maps of 'The Sea' and 'KFAS' reveals that domestic researchers frequently mix geographical and international names when referring to the waters surrounding the Korean Peninsula. These inconsistencies provide the motivation for the development of a basic unifying guideline for naming the seas surrounding the Korean Peninsula. With respect to this, we recommend the use of separate names for the marginal seas between continental landmasses and/or islands versus for the coastal waters surrounding Korea. For the marginal seas, the internationally recognized names are recommended to be used: East Sea; Yellow Sea; Korea Strait; and East China Sea. While for coastal seas, including Korea's territorial sea, the following geographical nomenclature is suggested to differentiate them from the marginal sea names: Coastal Sea off the East Coast of Korea (or the East Korea Coastal Zone), Coastal Sea off the South Coast of Korea (or the South Coastal Zone of Korea), and Coastal Sea off the West Coast of Korea (or the West Korea Coastal Zone). Further, for small or specific study areas, the local region names, district names, the sea names and the undersea feature names can be used on the maps.

Change Detection for High-resolution Satellite Images Using Transfer Learning and Deep Learning Network (전이학습과 딥러닝 네트워크를 활용한 고해상도 위성영상의 변화탐지)

  • Song, Ah Ram;Choi, Jae Wan;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.199-208
    • /
    • 2019
  • As the number of available satellites increases and technology advances, image information outputs are becoming increasingly diverse and a large amount of data is accumulating. In this study, we propose a change detection method for high-resolution satellite images that uses transfer learning and a deep learning network to overcome the limit caused by insufficient training data via the use of pre-trained information. The deep learning network used in this study comprises convolutional layers to extract the spatial and spectral information and convolutional long-short term memory layers to analyze the time series information. To use the learned information, the two initial convolutional layers of the change detection network are designed to use learned values from 40,000 patches of the ISPRS (International Society for Photogrammertry and Remote Sensing) dataset as initial values. In addition, 2D (2-Dimensional) and 3D (3-dimensional) kernels were used to find the optimized structure for the high-resolution satellite images. The experimental results for the KOMPSAT-3A (KOrean Multi-Purpose SATllite-3A) satellite images show that this change detection method can effectively extract changed/unchanged pixels but is less sensitive to changes due to shadow and relief displacements. In addition, the change detection accuracy of two sites was improved by using 3D kernels. This is because a 3D kernel can consider not only the spatial information but also the spectral information. This study indicates that we can effectively detect changes in high-resolution satellite images using the constructed image information and deep learning network. In future work, a pre-trained change detection network will be applied to newly obtained images to extend the scope of the application.

Geometry and Kinematics of the Yeongdeok Fault in the Cretaceous Gyeongsang Basin, SE Korea (한반도 동남부 백악기 경상분지 내 영덕단층의 기하와 운동학적 특성)

  • Seo, Kyunghan;Ha, Sangmin;Lee, Seongjun;Kang, Hee-Cheol;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.171-193
    • /
    • 2019
  • This study aims to identify the geometry and internal structures of the Yeongdeok Fault, a branch fault of the Yangsan Fault, by detailed mapping and to characterize its kinematics by analyzing the attitudes of sedimentary rocks adjacent to the fault, slip data on the fault surfaces, and anisotropy of magnetic susceptibility (AMS) of the fault gouges. The Yeongdeok Fault, which shows a total extension of 40 km on the digital elevation map, cuts the Triassic Yeongdeok Granite and the Cretaceous sedimentary and volcanic rocks with about 8.1 km of dextral strike-slip offset. The NNW- or N-S-striking Yeongdeok Fault runs as a single fault north of Hwacheon-ri, Yeongdeok-eup, but south of Hwacheon-ri it branches into two faults. The western one of these two faults shows a zigzag-shaped extension consisting of a series of NNE- to NE- and NNW-striking segments, while the eastern one is extended south-southeastward and then merged with the Yangsan Fault in Gangu-myeon, Yeongdeok-gun. The Yeongdeok Fault dips eastward with an angle of > $65^{\circ}$ at most outcrops and shows its fault cores and damage zones of 2~15 m and of up to 180 m wide, respectively. The fault cores derived from several different wall rocks, such as granites and sedimentary and volcanic rocks, show different deformation patterns. The fault cores derived from granites consist mainly of fault breccias with gouge zones less than 10 cm thick, in which shear deformation is concentrated. While the fault cores derived from sedimentary rocks consist of gouges and breccia zones, which anastomose and link up each other with greater widths than those derived from granites. The attitudes of sedimentary rocks adjacent to the fault become tilted at a high angle similar to that of the fault. The fault slip data and AMS of the fault gouges indicate two main events of the Yeongdeok Fault, (1) sinistral strike-slip under NW-SE compression and then (2) dextral strike-slip under NE-SW compression, and shows the overwhelming deformation feature recorded by the later dextral strike-slip. Comparing the deformation history and features of the Yeongdeok Fault in the study area with those of the Yangsan Fault of previous studies, it is interpreted that the two faults experienced the same sinistral and dextral strike-slip movements under the late Cretaceous NW-SE compression and the Paleogene NE-SW compression, respectively, despite the slight difference in strike of the two faults.

Characteristic on the Layout and Semantic Interpretation of Chungryu-Gugok, Dongaksan Mountain, Gokseong (곡성 동악산 청류구곡(淸流九曲)의 형태 및 의미론적 특성)

  • Rho, Jae-Hyun;Shin, Sang-Sup;Huh, Joon;Lee, Jung-Han;Han, Sang-Yub
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.4
    • /
    • pp.24-36
    • /
    • 2014
  • The result of the research conducted for the purpose of investigating the semantic value and the layout of the Cheongryu Gugok of Dorimsa Valley, which exhibits a high level of completeness and scenic preservation value among the three gugoks distributed in the area around Mt. Dongak of Gogseong is as follows.4) The area around Cheongryu Gugok shows a case where the gugok culture, which has been enjoyed as a model of the Neo-Confucianism culture and bedrock scenery, such as waterfall, riverside, pond, and flatland, following the beautiful valley, has been actually substituted, and is an outstanding scenery site as stated in a local map of Gokseong-hyeon in 1872 as "Samnam Jeil Amban Gyeryu Cheongryu-dong(三南第一巖盤溪流 淸流洞: Cheongryu-dong, the best rock mooring in the Samnam area)." Cheongryu Gugok, which is differentiated through the seasonal scenery and epigrams established on both land route and waterway, was probably established by the lead of Sun-tae Jeong(丁舜泰, ?~1916) and Byeong-sun Cho(曺秉順, 1876~1921) before 1916 during the Japanese colonization period. However, based on the fact that a number of Janggugiso of ancient sages, such as political activists, Buddhist leaders, and Neo-Confucian scholars, have been established, it is presumed to have been utilized as a hermit site and scenery site visited by masters from long ago. Cheongryu Gugok, which is formed on the rock floor of the bed rock of Dorimsa Valley, is formed in a total length of 1.2km and average gok(曲) length of 149m on a mountain type stream, which appears to be shorter compared to other gugoks in Korea. The rock writings of the three gugoks in Mt. Dongak, such as Cheongryu Gugok, which was the only one verified in the Jeonnam area, total 165 in number, which is determined to be the assembly place for the highest number of rock writings in the nation. In particular, a result of analyzing the rock writings in Cheongryu Gugok totaling 112 places showed 49pieces(43.8%) with the meaning of 'moral training' in epigram, 21pieces (18.8%) of human life, 16pieces(14.2%) of seasonal scenery, and 12pieces(10.6%) of Janggugiso such as Jangguchur, and the ratio occupied by poem verses appeared to be six cases(3.6%). Sweyeonmun(鎖烟門), which was the first gok of land route, and Jesiinganbyeolyucheon(除是人間別有天) which was the ninth gok of the waterway, corresponds to the Hongdanyeonse(虹斷烟鎖) of the first gok and Jesiinganbyeolyucheon of the ninth gok established in Jaecheon, Chungbuk by Se-hwa Park(朴世和, 1834~1910), which is inferred to be the name of Gugok having the same origin. In addition, the Daeeunbyeong(大隱屛) of the sixth gok. of land route corresponds to the Chu Hsi's Wuyi-Gugok of the seventh gok, which is acknowledged as the basis for Gugok Wollim, and the rock writings and stonework of 'Amseojae(巖棲齋)' and 'Pogyeongjae(抱經齋)' between the seventh gok and eighth gok is a trace comparable with Wuyi Jeongsa(武夷精舍) placed below Wuyi Gugok Eunbyeon-bong, which is understood to be the activity base of Cheongryu-dong of the Giho Sarim(畿湖士林). The rock writings in the Mt. Dongak area, including famous sayings by masters such as Sunsaeuhje(鮮史御帝, Emperor Gojong), Bogahyowoo(保家孝友, Emperor Gojong), Manchunmungywol(萬川明月, King Joengjo), Biryeobudong(非禮不動, Chongzhen Emperor of the Ming Dynasty)', Samusa(思無邪, Euijong of the Ming Dynasty), Baksechungpwoong(百世淸風, Chu Hsi), and Chungryususuk-Dongakpungkyung(淸流水石 動樂風景, Heungseon Daewongun) can be said to be a repository of semantic symbolic cultural scenery, instead of only expressing Confucian aesthetics. In addition, Cheongryu Gugok is noticeable with its feature as a cluster of cultural scenery of the three religions of Confucian-Buddhism-Taoism, where the Confucianism value system, Buddhist concept, and Taoist concept co-exists for mind training and cultivation. Cheongryu Gugok has a semantic feature and spatial character as a basis for history and cultural struggle for the Anti-Japan spirit that has been conceived during the process of establishing and utilizing the spirit of the learning, loyalty for the Emperor and expulsion of barbarians, and inspiration of Anti-Japan force, by inheriting the sense of Dotong(道統) of Neo-Confucianism by the Confucian scholar class at the end of the Joseon era that is represented by Ik-hyun Choi(崔益鉉, 1833~1906), Woo Jeon(田愚, 1841~1922), Woo-man Gi(奇宇萬, 1846~1916), Byung-sun Song(宋秉璿, 1836~1905), and Hyeon Hwang(黃玹, 1855~1910).