• Title/Summary/Keyword: Feature-map

Search Result 820, Processing Time 0.026 seconds

Precision shape modeling by z-map model

  • Park, Jung-Whan;Chung, Yun-Chan;Choi, Byoung-Kyn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2002
  • The Z-map is a special farm of discrete non-parametric representation in which the height values at grid points on the xy-plane are stored as a 2D array z[ij]. While the z-map is the simplest farm of representing sculptured surfaces and is the most versatile scheme for modeling non-parametric objects, its practical application in industry (eg, tool-path generation) has aroused much controversy over its weaknesses, namely its inaccuracy, singularity (eg, vertical wall), and some excessive storage needs. Much research or the application of the z-map can be found in various articles, however, research on the systematic analysis of sculptured surface shape representation via the z-map model is rather rare. Presented in this paper are the following: shape modeling power of the simple z-map model, exact (within tolerance) z-map representation of sculptured surfaces which have some feature-shapes such as vertical-walls and real sharp-edges by adopting some complementary z-map models, and some application examples.

The Development of Generalization Processing Using Digital Map Ver 2.0 (수치지도 Ver 2.0을 이용한 일반화 처리공정 개발)

  • 이재기;최석근;박기석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • This study is focused on development of generalization processing for 1/25,000 digital mapping using l/5,000 digital map. The generalization processing for digital map included in spatial and attribute information consists of 3 steps. The first, elimination of layer which is not included in 1/25,000 feature code. The second, classification of 8 feature codes. The third, merging of spatial and attribute information. Therefore using generalization workflow developed in this project, automatic generalization system will develope optimal in the future and also contribute product to small scale digital map and thematic map.

A Novel Feature Map Generation and Integration Method for Attention Based Visual Information Processing System using Disparity of a Stereo Pair of Images (주의 기반 시각정보처리체계 시스템 구현을 위한 스테레오 영상의 변위도를 이용한 새로운 특징맵 구성 및 통합 방법)

  • Park, Min-Chul;Cheoi, Kyung-Joo
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.55-62
    • /
    • 2010
  • Human visual attention system has a remarkable ability to interpret complex scenes with the ease and simplicity by selecting or focusing on a small region of visual field without scanning the whole images. In this paper, a novel feature map generation and integration method for attention based visual information processing system is proposed. The depth information obtained from a stereo pair of images is exploited as one of spatial visual features to form a set of topographic feature maps in our approach. Comparative experiments show that correct detection rate of visual attention regions improves by utilizing depth feature compared to the case of not using depth feature.

Experiment on Intermediate Feature Coding for Object Detection and Segmentation

  • Jeong, Min Hyuk;Jin, Hoe-Yong;Kim, Sang-Kyun;Lee, Heekyung;Choo, Hyon-Gon;Lim, Hanshin;Seo, Jeongil
    • Journal of Broadcast Engineering
    • /
    • v.25 no.7
    • /
    • pp.1081-1094
    • /
    • 2020
  • With the recent development of deep learning, most computer vision-related tasks are being solved with deep learning-based network technologies such as CNN and RNN. Computer vision tasks such as object detection or object segmentation use intermediate features extracted from the same backbone such as Resnet or FPN for training and inference for object detection and segmentation. In this paper, an experiment was conducted to find out the compression efficiency and the effect of encoding on task inference performance when the features extracted in the intermediate stage of CNN are encoded. The feature map that combines the features of 256 channels into one image and the original image were encoded in HEVC to compare and analyze the inference performance for object detection and segmentation. Since the intermediate feature map encodes the five levels of feature maps (P2 to P6), the image size and resolution are increased compared to the original image. However, when the degree of compression is weakened, the use of feature maps yields similar or better inference results to the inference performance of the original image.

Face and Facial Feature Detection under Pose Variation of User Face for Human-Robot Interaction (인간-로봇 상호작용을 위한 자세가 변하는 사용자 얼굴검출 및 얼굴요소 위치추정)

  • Park Sung-Kee;Park Mignon;Lee Taigun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.50-57
    • /
    • 2005
  • We present a simple and effective method of face and facial feature detection under pose variation of user face in complex background for the human-robot interaction. Our approach is a flexible method that can be performed in both color and gray facial image and is also feasible for detecting facial features in quasi real-time. Based on the characteristics of the intensity of neighborhood area of facial features, new directional template for facial feature is defined. From applying this template to input facial image, novel edge-like blob map (EBM) with multiple intensity strengths is constructed. Regardless of color information of input image, using this map and conditions for facial characteristics, we show that the locations of face and its features - i.e., two eyes and a mouth-can be successfully estimated. Without the information of facial area boundary, final candidate face region is determined by both obtained locations of facial features and weighted correlation values with standard facial templates. Experimental results from many color images and well-known gray level face database images authorize the usefulness of proposed algorithm.

Discolored Metal Pad Image Classification Based on Gabor Texture Features Using GPU (GPU를 이용한 Gabor Texture 특징점 기반의 금속 패드 변색 분류 알고리즘)

  • Cui, Xue-Nan;Park, Eun-Soo;Kim, Jun-Chul;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.778-785
    • /
    • 2009
  • This paper presents a Gabor texture feature extraction method for classification of discolored Metal pad images using GPU(Graphics Processing Unit). The proposed algorithm extracts the texture information using Gabor filters and constructs a pattern map using the extracted information. Finally, the golden pad images are classified by utilizing the feature vectors which are extracted from the constructed pattern map. In order to evaluate the performance of the Gabor texture feature extraction algorithm based on GPU, a sequential processing and parallel processing using OpenMP in CPU of this algorithm were adopted. Also, the proposed algorithm was implemented by using Global memory and Shared memory in GPU. The experimental results were demonstrated that the method using Shared memory in GPU provides the best performance. For evaluating the effectiveness of extracted Gabor texture features, an experimental validation has been conducted on a database of 20 Metal pad images and the experiment has shown no mis-classification.

Development of a SLAM System for Small UAVs in Indoor Environments using Gaussian Processes (가우시안 프로세스를 이용한 실내 환경에서 소형무인기에 적합한 SLAM 시스템 개발)

  • Jeon, Young-San;Choi, Jongeun;Lee, Jeong Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1098-1102
    • /
    • 2014
  • Localization of aerial vehicles and map building of flight environments are key technologies for the autonomous flight of small UAVs. In outdoor environments, an unmanned aircraft can easily use a GPS (Global Positioning System) for its localization with acceptable accuracy. However, as the GPS is not available for use in indoor environments, the development of a SLAM (Simultaneous Localization and Mapping) system that is suitable for small UAVs is therefore needed. In this paper, we suggest a vision-based SLAM system that uses vision sensors and an AHRS (Attitude Heading Reference System) sensor. Feature points in images captured from the vision sensor are obtained by using GPU (Graphics Process Unit) based SIFT (Scale-invariant Feature Transform) algorithm. Those feature points are then combined with attitude information obtained from the AHRS to estimate the position of the small UAV. Based on the location information and color distribution, a Gaussian process model is generated, which could be a map. The experimental results show that the position of a small unmanned aircraft is estimated properly and the map of the environment is constructed by using the proposed method. Finally, the reliability of the proposed method is verified by comparing the difference between the estimated values and the actual values.

A Study on Localization Methods for Autonomous Vehicle based on Particle Filter Using 2D Laser Sensor Measurements and Road Features (2D 레이저센서와 도로정보를 이용한 Particle Filter 기반 자율주행 차량 위치추정기법 개발)

  • Ahn, Kyung-Jae;Lee, Taekgyu;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.803-810
    • /
    • 2016
  • This paper presents a study of localization methods based on particle filter using 2D laser sensor measurements and road feature map information, for autonomous vehicles. In order to navigate in an urban environment, an autonomous vehicle should be able to estimate the location of the ego-vehicle with reasonable accuracy. In this study, road features such as curbs and road markings are detected to construct a grid-based feature map using 2D laser range finder measurements. Then, we describe a particle filter-based method for accurate positional estimation of the autonomous vehicle in real-time. Finally, the performance of the proposed method is verified through real road driving experiments, in comparison with accurate DGPS data as a reference.

A Fast and Scalable Image Retrieval Algorithms by Leveraging Distributed Image Feature Extraction on MapReduce (MapReduce 기반 분산 이미지 특징점 추출을 활용한 빠르고 확장성 있는 이미지 검색 알고리즘)

  • Song, Hwan-Jun;Lee, Jin-Woo;Lee, Jae-Gil
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1474-1479
    • /
    • 2015
  • With mobile devices showing marked improvement in performance in the age of the Internet of Things (IoT), there is demand for rapid processing of the extensive amount of multimedia big data. However, because research on image searching is focused mainly on increasing accuracy despite environmental changes, the development of fast processing of high-resolution multimedia data queries is slow and inefficient. Hence, we suggest a new distributed image search algorithm that ensures both high accuracy and rapid response by using feature extraction of distributed images based on MapReduce, and solves the problem of memory scalability based on BIRCH indexing. In addition, we conducted an experiment on the accuracy, processing time, and scalability of this algorithm to confirm its excellent performance.

Facial Feature Extraction Based on Private Energy Map in DCT Domain

  • Kim, Ki-Hyun;Chung, Yun-Su;Yoo, Jang-Hee;Ro, Yong-Man
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.243-245
    • /
    • 2007
  • This letter presents a new feature extraction method based on the private energy map (PEM) technique to utilize the energy characteristics of a facial image. Compared with a non-facial image, a facial image shows large energy congestion in special regions of discrete cosine transform (DCT) coefficients. The PEM is generated by energy probability of the DCT coefficients of facial images. In experiments, higher face recognition performance figures of 100% for the ORL database and 98.8% for the ETRI database have been achieved.

  • PDF