• Title/Summary/Keyword: Feature-level

Search Result 1,273, Processing Time 0.025 seconds

Classification of Breast Tumor Cell Tissue Section Images (유방 종양 세포 조직 영상의 분류)

  • 황해길;최현주;윤혜경;남상희;최흥국
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.22-30
    • /
    • 2001
  • In this paper we propose three classification algorithms to classify breast tumors that occur in duct into Benign, DCIS(ductal carcinoma in situ) NOS(invasive ductal carcinoma) The general approach for a creating classifier is composed of 2 steps: feature extraction and classification Above all feature extraction for a good classifier is very significance, because the classification performance depends on the extracted features, Therefore in the feature extraction step, we extracted morphology features describing the size of nuclei and texture features The internal structures of the tumor are reflected from wavelet transformed images with 10$\times$ and 40$\times$ magnification. Pariticulary to find the correlation between correct classification rates and wavelet depths we applied 1, 2, 3 and 4-level wavelet transforms to the images and extracted texture feature from the transformed images The morphology features used are area, perimeter, width of X axis width of Y axis and circularity The texture features used are entropy energy contrast and homogeneity. In the classification step, we created three classifiers from each of extracted features using discriminant analysis The first classifier was made by morphology features. The second and the third classifiers were made by texture features of wavelet transformed images with 10$\times$ and 40$\times$ magnification. Finally we analyzed and compared the correct classification rate of the three classifiers. In this study, we found that the best classifier was made by texture features of 3-level wavelet transformed images.

  • PDF

Disease Region Feature Extraction of Medical Image using Wavelet (Wavelet에 의한 의용영상의 병소부위 특징추출)

  • 이상복;이주신
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.3
    • /
    • pp.73-81
    • /
    • 1998
  • In this paper suggest for methods disease region feature extraction of medical image using wavelet. In the preprocessing, the shape informations of medical image are selected by performing the discrete wavelet transform(DWT) with four level coefficient matrix. In this approach, based on the characteristics of the coefficient matrix, 96 feature parameters are calculated as follows: Firstly. obtaining 32 feature parameters which have the characteristics of low frequency from the parameters according to the horizontal high frequency are calculated from the coefficient matrix of horizontal high frequency. In the third place, 16 vertical feature parameters are also calculated using the same kind of procedure with respect to the vertical high frequency. Finally, 32 feature parameters of diagonal high frequency are obtained from the coefficient matrix of diagonal high frequency. Consequently, 96 feature aprameters extracted. Using suggest algorithm in this paper will, implamentation can automatic recognition system, increasing efficiency of picture achieve communication system.

  • PDF

Iris Recognition Based on a Shift-Invariant Wavelet Transform

  • Cho, Seongwon;Kim, Jaemin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.322-326
    • /
    • 2004
  • This paper describes a new iris recognition method based on a shift-invariant wavelet sub-images. For the feature representation, we first preprocess an iris image for the compensation of the variation of the iris and for the easy implementation of the wavelet transform. Then, we decompose the preprocessed iris image into multiple subband images using a shift-invariant wavelet transform. For feature representation, we select a set of subband images, which have rich information for the classification of various iris patterns and robust to noises. In order to reduce the size of the feature vector, we quantize. each pixel of subband images using the Lloyd-Max quantization method Each feature element is represented by one of quantization levels, and a set of these feature element is the feature vector. When the quantization is very coarse, the quantized level does not have much information about the image pixel value. Therefore, we define a new similarity measure based on mutual information between two features. With this similarity measure, the size of the feature vector can be reduced without much degradation of performance. Experimentally, we show that the proposed method produced superb performance in iris recognition.

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

Scene Text Extraction in Natural Images using Hierarchical Feature Combination and Verification (계층적 특징 결합 및 검증을 이용한 자연이미지에서의 장면 텍스트 추출)

  • 최영우;김길천;송영자;배경숙;조연희;노명철;이성환;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.420-438
    • /
    • 2004
  • Artificially or naturally contained texts in the natural images have significant and detailed information about the scenes. If we develop a method that can extract and recognize those texts in real-time, the method can be applied to many important applications. In this paper, we suggest a new method that extracts the text areas in the natural images using the low-level image features of color continuity. gray-level variation and color valiance and that verifies the extracted candidate regions by using the high-level text feature such as stroke. And the two level features are combined hierarchically. The color continuity is used since most of the characters in the same text lesion have the same color, and the gray-level variation is used since the text strokes are distinctive in their gray-values to the background. Also, the color variance is used since the text strokes are distinctive in their gray-values to the background, and this value is more sensitive than the gray-level variations. The text level stroke features are extracted using a multi-resolution wavelet transforms on the local image areas and the feature vectors are input to a SVM(Support Vector Machine) classifier for the verification. We have tested the proposed method using various kinds of the natural images and have confirmed that the extraction rates are very high even in complex background images.

Feature Model Specification Method in Product-Line Development (프로덕트 라인 개발에서 피쳐 모델의 명세화 기법)

  • 송재승;김민성;박수용
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1001-1014
    • /
    • 2003
  • In a feature modeling, problems such as ambiguities, interpretation errors, incompleteness, etc caused by informal specification occur in the modeling phase. Therefore, feature specification method and processes are suggested in this paper to resolve these problems. The structure and language of feature modeling is defined in this paper to specify various features. First, this feature model is abstracted in the meta-level to get predicates and attributes. Formal feature model specification method is proposed using multi-paradigm language. Second, Feature specification process is proposed to describe how to specify feature formally. And third, Feature interaction management is defined to solve the problems caused between specified features. Finally, the proposed feature specification method is applied to Distributed Meeting Scheduler System domain.

Texture analysis of Thyroid Nodules in Ultrasound Image for Computer Aided Diagnostic system (컴퓨터 보조진단을 위한 초음파 영상에서 갑상선 결절의 텍스쳐 분석)

  • Park, Byung eun;Jang, Won Seuk;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • According to living environment, the number of deaths due to thyroid diseases increased. In this paper, we proposed an algorithm for recognizing a thyroid detection using texture analysis based on shape, gray level co-occurrence matrix and gray level run length matrix. First of all, we segmented the region of interest (ROI) using active contour model algorithm. Then, we applied a total of 18 features (5 first order descriptors, 10 Gray level co-occurrence matrix features(GLCM), 2 Gray level run length matrix features and shape feature) to each thyroid region of interest. The extracted features are used as statistical analysis. Our results show that first order statistics (Skewness, Entropy, Energy, Smoothness), GLCM (Correlation, Contrast, Energy, Entropy, Difference variance, Difference Entropy, Homogeneity, Maximum Probability, Sum average, Sum entropy), GLRLM features and shape feature helped to distinguish thyroid benign and malignant. This algorithm will be helpful to diagnose of thyroid nodule on ultrasound images.

Assessment of traffic-induced low frequency sound radiated from a viaduct by field experiment

  • Kawatani, M.;Kim, C.W.;Nishitani, K.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.373-387
    • /
    • 2010
  • This study is intended to assess low frequency sound radiated from a viaduct under normal traffic. The bridge comprises steel box girders and wide cantilever decks on which vehicles pass. The low frequency sound and the acceleration response of the bridge under normal traffic are measured to investigate how bridge vibrations affect the low frequency sound observed near the bridge. Observations demonstrate that strong relationships exist between frequency characteristic of bridge's acceleration response and the sound pressure level of low frequency sound. A noteworthy point is that the dynamic feature of the sound pressure level is mostly affected by dynamic feature of the span locating near the observation point.

F-Hessian SIFT-Based Railroad Level-Crossing Vision System (F-Hessian SIFT기반의 철도건널목 영상 감시 시스템)

  • Lim, Hyung-Sup;Yoon, Hak-Sun;Kim, Chel-Huan;Ryu, Deung-Ryeol;Cho, Hwang;Lee, Key-Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.138-144
    • /
    • 2010
  • This paper presents the experimental analysis of a F-Hessian SIFT-Based Railroad Level-Crossing Safety Vision System. Region of surveillance, region of interests, data matching based on extracting feature points has been examined under the laboratory condition by the model rig on a small scale. Real-time system were observed by using SIFT based on F-Hessian feature tracking method and other common algorithm.

Block Classification of Document Images Using the Spatial Gray Level Dependence Matrix (SGLDM을 이용한 문서영상의 블록 분류)

  • Kim Joong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1347-1359
    • /
    • 2005
  • We propose an efficient block classification of the document images using the second-order statistical texture features computed from spatial gray level dependence matrix (SGLDM). We studied on the techniques that will improve the block speed of the segmentation and feature extraction speed and the accuracy of the detailed classification. In order to speedup the block segmentation, we binarize the gray level image and then segmented by applying smoothing method instead of using texture features of gray level images. We extracted seven texture features from the SGLDM of the gray image blocks and we applied these normalized features to the BP (backpropagation) neural network, and classified the segmented blocks into the six detailed block categories of small font, medium font, large font, graphic, table, and photo blocks. Unlike the conventional texture classification of the gray level image in aerial terrain photos, we improve the classification speed by a single application of the texture discrimination mask, the size of which Is the same as that of each block already segmented in obtaining the SGLDM.

  • PDF