In this paper, we propose a 3D modeling method using Laser Slit Beam and Stereo Camera. We can get depth information of image by analyzing projected Laser Slit Beam on object. 3D modeling is demanded exquisite merge of 3D data. In our approach, we can get the depth image where the reliability is high. Each reconstructed 3D modeling is combined by the sink information which is acquired by SIFT (Scale Invariant Feature Transform) Algorithm. We perform experiments using indoor images. The results show that the proposed method works well in indoor environments
In this paper, we design and implement E-COIRS enabling users to query with concepts and image features used for further refining the concepts. For example, E-COIRS supports the query "retrieve images containing black home appliance to north of reception set. "The query includes two types of concepts: IS-A and composite. "home appliance"is an IS-A concept, and "reception set" is a composite concept. For evaluating such a query. E-COIRS includes three important components: a visual image indexer, thesauri and a query processor. Each pair of objects in an mage captured by the visual image indexer is converted into a triple. The triple consists of the two object identifiers (oids) and their spatial relationship. All the features of an object is referenced by its old. A composite concept is detected by the triple thesaurus and IS-A concept is recolonized by the fuzzy term thesaurus. The query processor obtains an image set by matching each triple in a user with an inverted file and CS-Tree. To support efficient storage use and fast retrieval on high-dimensional feature vectors, E-COIRS uses Cell-based Signature tree(CS-Tree). E-COIRS is a more advanced content-based image retrieval system than other systems which support only concepts or image features.
Synthetic Aperture Radar (SAR)영상은 날씨와 주야에 관계없이 취득될 수 있어 감시, 정찰 및 국토안보 등의 목적을 위한 자동표적인식(Automatic Target Recognition, ATR)에 활용 가능성이 높다. 그러나, 식별 시스템 개발을 위해 다양하고 방대한 양의 시험영상을 구축하는 것은 비용, 운용측면에서 한계가 있다. 최근 표적 모델을 이용하여 시뮬레이션된 SAR 영상에 기반한 표적 식별 시스템 개발에 대한 관심이 높아지고 있다. SAR-ATR 분야에서 대표적으로 이용되는 산란점 매칭과 템플릿 매칭 기반 알고리즘을 적용하여 표적식별을 수행하였다. 먼저 산란점 매칭 기반의 식별은 점을 World View Vector (WVV)로 재구성 후 Weighted Bipartite Graph Matching (WBGM)을 수행하였고, 템플릿 매칭을 통한 식별은 서로 인접한 산란점으로 재구성한 두 영상간의 상관계수를 사용하였다. 개발한 두 알고리즘의 식별성능시험을 위해 최근 미국 Defense Advanced Research Projects Agency (DARPA)에서 배포한 표적 시뮬레이션 영상인 Synthetic and Measured Paired Labeled Experiment (SAMPLE) 자료를 사용하였다. 표준 환경, 표적의 부분 폐색, 랜덤 폐색 정도에 따른 알고리즘 성능을 분석하였다. 산란점 매칭 알고리즘의 식별 성능이 템플릿 매칭보다 전반적으로 우수하였다. 10개 표적을 대상으로 표준환경에서의 산란점 매칭기반 평균 식별률은 85.1%, 템플릿 매칭기반은 74.4%이며, 표적별 식별성능 편차 또한 산란점 매칭기법이 템플릿 매칭기법보다 작았다. 표적의 부분 폐색정도에 따른 성능은 산란점 매칭기반 알고리즘이 템플릿 매칭보다 약 10% 높고, 표적의 랜덤 폐색 60% 발생에도 식별률이 73.4% 정도로 비교적 높은 식별성능을 보였다.
최근 전 지구적, 혹은 대규모 지역의 분석 및 모니터링을 위한 위성영상의 사용이 늘어나고 있으며 이를 처리하기 위해 빠르고 편리한 '영상좌표 상호등록'방법이 요구되고 있다. 이러한 '영상좌표 상호등록'은 위성의 센서모델 및 천체력 자료를 이용하는 엄밀 모델식을 이용하는 방법과 기 존재하는 기준 영상(Reference image)을 사용하거나 혹은 수치지도를 사용하는 경험적 방법의 두 가지로 분류할 수 있다. '영상좌표 상호등록'의 효율성을 높이기 위해서 저자는 '사전검수 영역기반정합법'(Pre-qualified area matching)을 사용하였다. 이는 Canny 연산자를 이용한 경계추출법, 교차상관계수를 사용한 영역기반정합법(Area based matching), t-분포를 이용하여 95%의 신뢰구간 내에서 과대오차 소거법을 적용한 방법이다. 이러한 사전검수(Pre-qualification) 과정을 통해 연산시간을 현저히 단축시켰고, '영상좌표 상호등록'의 정확도 역시 향상됨을 알 수 있었다. 제안한 알고리즘을 사용하여 프로그램을 작성하고, 한반도 Landsat ETM+ 영상 3장을 이용하여 테스트하였다. 정합점 간의 평균제곱오차는 0.435 영상소, 정합점은 평균 25,573개로 나타났다. 연산 시간은 3.0GHz 1Gb RAM 사양의 컴퓨터에서 평균 약 4.2분으로 나타났다.
본 연구에서는 대표적인 영상 정합기법 중 하나인 SIFT 기법을 이용하여, 고해상도의 초분광 스트립 영상에 대하여 높은 품질의 모자이크 영상을 생성하고자 하였다. 이를 위해, 항공사진 촬영당시의 GPS/INS 정보를 이용하여 초기 기하보정된 AISA Eagle 초분광 영상에 대하여 실험을 진행하였다. 세 개의 스트립으로 구성된 초분광 영상 간의 정합쌍을 추출하여 변환모델식을 구성하였고, 모자이크 영상을 생성하였다. 특히, 고품질의 초분광 모자이크 영상을 생성하기 위하여, 초분광 영상 내의 대표 밴드를 선정하고, 이를 이용한 영상 정합기법의 결과들을 분석하여 최적의 대표 밴드를 결정하고자 하였다. 본 연구를 통해 생성된 모자이크 영상의 위치 정확도를 비교 평가하기 위해서, GPS/INS 시스템으로 기하보정된 AISA Eagle 초분광 영상을 이용하여 생성한 모자이크 영상과의 시각적 비교 평가를 수행하였으며, 본 연구에서 수행한 방법들의 효용성을 분석하였다.
A key component of autonomous navigation of intelligent home robot is localization and map building with recognized features from the environment. To validate this, accurate measurement of relative location between robot and features is essential. In this paper, we proposed relative localization algorithm based on 3D reconstruction of scale invariant features of two images which are captured from two parallel cameras. We captured two images from parallel cameras which are attached in front of robot and detect scale invariant features in each image using SIFT(scale invariant feature transform). Then, we performed matching for the two image's feature points and got the relative location using 3D reconstruction for the matched points. Stereo camera needs high precision of two camera's extrinsic and matching pixels in two camera image. Because we used two cameras which are different from stereo camera and scale invariant feature point and it's easy to setup the extrinsic parameter. Furthermore, 3D reconstruction does not need any other sensor. And the results can be simultaneously used by obstacle avoidance, map building and localization. We set 20cm the distance between two camera and capture the 3frames per second. The experimental results show :t6cm maximum error in the range of less than 2m and ${\pm}15cm$ maximum error in the range of between 2m and 4m.
모자이크란 여러 가지 빛깔의 재료를 조각조각 붙여서 무늬나 영상을 만드는 기법을 말하며, 최근에는 디지털 이미징 기술의 발달로 인하여 사진을 이용하여 영상을 만드는 포토 모자이크 기술들이 활용되고 있다. 본 논문에서는 적응적 타일링 및 블록 매칭을 통하여 포토 모자이크 영상을 만드는 컴퓨터 알고리즘을 제안한다. 제안한 알고리즘은 사진 데이터베이스의 생성 단계와 포토 모자이크 생성 단계로 구성된다. 사진 데이터베이스란 모자이크에 사용되는 사진(또는 타일)을 의미하며, 타일을 $4{\times}4$로 분할한 후에 각 영역의 RGB 평균값을 특징값으로 저장한다. 포토 모자이크 생성 단계는 입력 영상에 대하여 기 설정된 블록 크기로 분할한 후에 특징을 추출하는 과정, 인접한 블록들 사이의 유사도를 비교하여 병합하는 적응적 타일링 과정, 적응적 타일링을 통해 생성된 블록들을 사진 데이터베이스의 타일들과 유클리드 차이로 유사도를 비교하여 유사한 타일을 찾는 블록 매칭 과정 및 매칭된 타일의 명암값을 해당 블록의 명암값으로 교체하여 영상의 유사도를 높이는 밝기값 조정 과정으로 구성된다. 또한 인접 블록간 타일의 중복성을 최소화하는 기법을 적용하여 영상의 품질도 향상하였다. 제안한 알고리즘의 성능을 분석하기 위하여 안드레아 모자이크 소프트웨어와 비교하였고, 정량적인 분석 및 정성적인 분석에 있어서 제안한 알고리즘이 우수한 것으로 나타났다.
본 논문은 뼈대-구조(skeleton) 형태의 Active Shape Models을 이용한 사람의 자세 정합에 대한 새로운 접근 방법을 제안한다. 제안된 방법은 모델 생성과 정합 과정에서의 빠른 수행 시간을 위해 기존 윤곽 형태(silhouette)의 모델이 아닌 뼈대-구조 형태의 모델을 적용하였다. 기존 Active Shape Models을 뼈대-구조 형태로 사람 자세 정합에 적용했을 경우 자세를 결정짓는 팔과 다리의 부정확한 정합은 사람 몸의 다양한 색상 정보와 전후(fore-rear direction)만을 고려한 특징점(landmark)의 방향정보로 인해 발생되며, 이러한 문제점은 입력 영상의 차영상 정보와 사람의 자세를 결정짓는 팔과 다리의 중요 특징점에 방향정보를 추가하여 해결하였다. 사람의 뼈대-구조 모델을 생성하기 위해 600개의 이미지를 사용 하였으며, 생성된 형태 모델은 사람의 자세에 정합될 수 있는 17개의 특징점을 포함한다. 정합 과정에서 최대 30번 이하의 반복 과정을 수행 하며, 최대 수행 시간은 0.03초로 빠른 수행 시간의 결과를 얻었다.
본 논문에서는 특징 기반 3D 모델링 알고리즘을 제안한다. 깊이 기반 기술을 다루는 전통적인 방법들은 영상 정합을 위한 깊이정보추출에 많은 시간을 필요로 한다. 특징 기반 알고리즘에서 삼각형 내부의 모든 픽셀들에 대한 모델링 오차 계산이 필요하다 할지라도 깊이 기반 보다는 특징기반 방법들이 보다 적은 계산 부담을 가지나 이는 또한 계산 시간을 증가 시킨다. 그러므로 제안된 알고리즘은 효율적인 3D 모델을 생성하기 위해 초기 3D 모델 생성, 모델 평가 및 모델 세분화의 3단계로 구성하였다. 초기 모델 생성을 위해 자기 변화와 델루니 삼각화가 사용되었고 이 단계에서 빠른 경계 추출과 점진적인 델루니 삼각화 및 삼각형 내부의 중심에 가까운 정점을 선택하거나 모든 픽셀에 대한 오차 계산을 위한 연산 시간을 줄이기 위해 형태학적 미분 연산자를 수정하여 이용하였다. 모델 생성 후 평가 단계에서 표면의 변이 변화와 근사 오차 및 표면의 크기를 평가하여 드물게 정합을 수행 하였고, 그 후 큰 오차를 갖는 표면들을 선택하여 작은 표면이 되게 세밀화 작업을 했다. 실험 결과 제안된 알고리즘이 평탄영역 및 급격한 영역에서 보다 적은 모델링 오류로 적응적인 모델을 획득할 수 있었고 모델 획득시간을 현저하게 줄일 수 있었다.
화면 내의 평면영역에서 투영변환행렬 대응 매칭법을 제안한다. 본 연구는 RANSAC에 있지만, RANSAC에서 랜덤 샘플링에 균일분포를 이용하는 것아 아니고, 화상의 특징점 위치나 템플리트 매칭의 차이로부터 구한 다중의 비균일 분포를 이용한다. 기존의 매칭법은 정대응이 거의 만족해야 할 조건을 이용하여 올바르다고 추정되는 대응을 샘플링하고, 그 대응을 1대 1로 매칭시켜 RANSAC을 행하였지만, 제안 방법에서는 화상으로부터 구한 다중의 확률 분포에서 단계적으로 샘플링함으로써 확률이 높은 정대응을 다중의 대응 후보 중에서 효율적으로 샘플링할 수 있다. 그 결과 최종적으로 수많은 정대응을 구할 수 있으며, 시뮬레이션과 실제 화상의 실험에 의하여 제안 방법의 유효성을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.