• Title/Summary/Keyword: Feature-based Warping

Search Result 50, Processing Time 0.026 seconds

A Field-based Morphing with Semi-automatic Control Lines Matching Using Image Segmentation (영상 분할을 이용한 반자동 제어선 정합에 의한 필드 기반 모핑)

  • Lee Hyoung-Jin;Kwak No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.5 no.4
    • /
    • pp.269-274
    • /
    • 2004
  • The field based morping requires the user to set most of the control lines manually which require much time and skill to get satisfactory results. This tjesis proposes a method to acquire semi-automation of image morphing through first acquiring shape information from the source image and the target image, than after the user manually designates the least amount of a pair of feature points, these are used as standards for polygon based vertex to set the appropriate control line to the source image and target image, and then using the ratio of control line lengths and space. Using the proposed method the user can reduce the time setting the control line and unskilled persons can get natural image morphing results while desingnating the least amount of control line.

  • PDF

Development of Audio Melody Extraction and Matching Engine for MIREX 2011 tasks

  • Song, Chai-Jong;Jang, Dalwon;Lee, Seok-Pil;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.164-166
    • /
    • 2012
  • In this paper, we proposed a method for extracting predominant melody of polyphonic music based on harmonic structure. Harmonic structure is an important feature parameter of monophonic signal that has spectral peaks at the integer multiples of its fundamental frequency. We extract all fundamental frequency candidates contained in the polyphonic signal by verifying the required condition of harmonic structure. Then, we combine those harmonic peaks corresponding to each extracted fundamental frequency and assign a rank to each after calculating its harmonic average energy. We run pitch tracking based on the rank of extracted fundamental frequency and continuity of fundamental frequency, and determine the predominant melody. For the query by singing/humming (QbSH) task, we proposed Dynamic Time Warping (DTW) based matching engine. Our system reduces false alarm by combining the distances of multiple DTW processes. To improve the performance, we introduced the asymmetric sense, pitch level compensation, and distance intransitiveness to DTW algorithm.

  • PDF

Enhancement on 3 DoF Image Stitching Using Inertia Sensor Data (관성 센서 데이터를 활용한 3 DoF 이미지 스티칭 향상)

  • Kim, Minwoo;Kim, Sang-Kyun
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.51-61
    • /
    • 2017
  • This paper proposes a method to generate panoramic images by combining conventional feature extraction algorithms (e.g., SIFT, SURF, MPEG-7 CDVS) with sensed data from an inertia sensor to enhance the stitching results. The challenge of image stitching increases when the images are taken from two different mobile phones with no posture calibration. Using inertia sensor data obtained by the mobile phone, images with different yaw angles, pitch angles, roll angles are preprocessed and adjusted before performing stitching process. Performance of stitching (e.g., feature extraction time, inlier point numbers, stitching accuracy) between conventional feature extraction algorithms is reported along with the stitching performance with/without using the inertia sensor data.

Lattice-Based Background Motion Compensation for Detection of Moving Objects with a Single Moving Camera (이동하는 단안 카메라 환경에서 이동물체 검출을 위한 격자 기반 배경 움직임 보상방법)

  • Myung, Yunseok;Kim, Gyeonghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.52-54
    • /
    • 2015
  • In this paper we propose a new background motion compensation method which can be applicable to moving object detection with a moving monocular camera. To estimate the background motion, a series of image warpings are carried out for each pair of the corresponding patches, defined by the fixed-size lattice, based on the motion information extracted from the feature points surrounded by the patches and the estimated camera motion. Experiment results proved that the proposed has approximately 50% faster in execution time and 8dB higher in PSNR comparing to a conventional method.

2D Grid Map Compensation Using ICP Algorithm based on Feature Points (특징 점 기반의 ICP 알고리즘을 이용한 2차원 격자지도 보정)

  • Hwang, Yu-Seop;Lee, Dong-Ju;Yu, Ho-Yun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.965-971
    • /
    • 2015
  • This paper suggests a feature point-based Iterative Closest Point (ICP) algorithm to compensate for the disparity error in building a two-dimensional map. The ICP algorithm is a typical algorithm for matching a common object in two different images. In the process of building a two-dimensional map using the laser scanner data, warping and distortions exist in the map because of the disparity between the two sensor values. The ICP algorithm has been utilized to reduce the disparity error in matching the scanned line data. For this matching process in the conventional ICP algorithm, pre-known reference data are required. Since the proposed algorithm extracts characteristic points from laser-scanned data, reference data are not required for the matching. The laser scanner starts from the right side of the mobile robot and ends at the left side, which causes disparity in the scanned line data. By finding the matching points between two consecutive frame images, the motion vector of the mobile robot can be obtained. Therefore, the disparity error can be minimized by compensating for the motion vector caused by the mobile robot motion. The validity of the proposed algorithm has been verified by comparing the proposed algorithm in terms of map-building accuracy to conventional ICP algorithm real experiments.

A Study on the Development of Embedded Serial Multi-modal Biometrics Recognition System (임베디드 직렬 다중 생체 인식 시스템 개발에 관한 연구)

  • Kim, Joeng-Hoon;Kwon, Soon-Ryang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • The recent fingerprint recognition system has unstable factors, such as copy of fingerprint patterns and hacking of fingerprint feature point, which mali cause significant system error. Thus, in this research, we used the fingerprint as the main recognition device and then implemented the multi-biometric recognition system in serial using the speech recognition which has been widely used recently. As a multi-biometric recognition system, once the speech is successfully recognized, the fingerprint recognition process is run. In addition, speaker-dependent DTW(Dynamic Time Warping) algorithm is used among existing speech recognition algorithms (VQ, DTW, HMM, NN) for effective real-time process while KSOM (Kohonen Self-Organizing feature Map) algorithm, which is the artificial intelligence method, is applied for the fingerprint recognition system because of its calculation amount. The experiment of multi-biometric recognition system implemented in this research showed 2 to $7\%$ lower FRR (False Rejection Ratio) than single recognition systems using each fingerprints or voice, but zero FAR (False Acceptance Ratio), which is the most important factor in the recognition system. Moreover, there is almost no difference in the recognition time(average 1.5 seconds) comparing with other existing single biometric recognition systems; therefore, it is proved that the multi-biometric recognition system implemented is more efficient security system than single recognition systems based on various experiments.

Enhancement of the Correctness of Marker Detection and Marker Recognition based on Artificial Neural Network (인공신경망을 이용한 마커 검출 및 인식의 정확도 개선)

  • Kang, Sun-Kyung;Kim, Young-Un;So, In-Mi;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • In this paper, we present a method for the enhancement of marker detection correctness and marker recognition speed by using artificial neural network. Contours of objects are extracted from the input image. They are approximated to a list of line segments. Quadrangles are found with the geometrical features of the approximated line segments. They are normalized into exact squares by using the warping technique and scale transformation. Feature vectors are extracted from the square image by using principal component analysis. Artincial neural network is used to checks if the square image is a marker image or a non-marker image. After that, the type of marker is recognized by using an artificial neural network. Experimental results show that the proposed method enhances the correctness of the marker detection and recognition.

  • PDF

Robust Speech Parameters for the Emotional Speech Recognition (감정 음성 인식을 위한 강인한 음성 파라메터)

  • Lee, Guehyun;Kim, Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.681-686
    • /
    • 2012
  • This paper studied the speech parameters less affected by the human emotion for the development of the robust emotional speech recognition system. For this purpose, the effect of emotion on the speech recognition system and robust speech parameters of speech recognition system were studied using speech database containing various emotions. In this study, mel-cepstral coefficient, delta-cepstral coefficient, RASTA mel-cepstral coefficient, root-cepstral coefficient, PLP coefficient and frequency warped mel-cepstral coefficient in the vocal tract length normalization method were used as feature parameters. And CMS (Cepstral Mean Subtraction) and SBR(Signal Bias Removal) method were used as a signal bias removal technique. Experimental results showed that the HMM based speaker independent word recognizer using frequency warped RASTA mel-cepstral coefficient in the vocal tract length normalized method, its derivatives and CMS as a signal bias removal showed the best performance.

Virtual Target Overlay Technique by Matching 3D Satellite Image and Sensor Image (3차원 위성영상과 센서영상의 정합에 의한 가상표적 Overlay 기법)

  • Cha, Jeong-Hee;Jang, Hyo-Jong;Park, Yong-Woon;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1259-1268
    • /
    • 2004
  • To organize training in limited training area for an actuai combat, realistic training simulation plugged in by various battle conditions is essential. In this paper, we propose a virtual target overlay technique which does not use a virtual image, but Projects a virtual target on ground-based CCD image by appointed scenario for a realistic training simulation. In the proposed method, we create a realistic 3D model (for an instructor) by using high resolution Geographic Tag Image File Format(GeoTIFF) satellite image and Digital Terrain Elevation Data (DTED), and extract the road area from a given CCD image (for both an instructor and a trainee). Satellite images and ground-based sensor images have many differences in observation position, resolution, and scale, thus yielding many difficulties in feature-based matching. Hence, we propose a moving synchronization technique that projects the target on the sensor image according to the marked moving path on 3D satellite image by applying Thin-Plate Spline(TPS) interpolation function, which is an image warping function, on the two given sets of corresponding control point pair. To show the experimental result of the proposed method, we employed two Pentium4 1.8MHz personal computer systems equipped with 512MBs of RAM, and the satellite and sensor images of Daejoen area are also been utilized. The experimental result revealed the effective-ness of proposed algorithm.

Synthesis of Realistic Facial Expression using a Nonlinear Model for Skin Color Change (비선형 피부색 변화 모델을 이용한 실감적인 표정 합성)

  • Lee Jeong-Ho;Park Hyun;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.67-75
    • /
    • 2006
  • Facial expressions exhibit not only facial feature motions, but also subtle changes in illumination and appearance. Since it is difficult to generate realistic facial expressions by using only geometric deformations, detailed features such as textures should also be deformed to achieve more realistic expression. The existing methods such as the expression ratio image have drawbacks, in that detailed changes of complexion by lighting can not be generated properly. In this paper, we propose a nonlinear model for skin color change and a model-based synthesis method for facial expression that can apply realistic expression details under different lighting conditions. The proposed method is composed of the following three steps; automatic extraction of facial features using active appearance model and geometric deformation of expression using warping, generation of facial expression using a model for nonlinear skin color change, and synthesis of original face with generated expression using a blending ratio that is computed by the Euclidean distance transform. Experimental results show that the proposed method generate realistic facial expressions under various lighting conditions.