Three-phase grid-connected inverters are widely applied in the fields of new energy power generation, electric vehicles and so on. Islanding detection is necessary to ensure the stability and safety of such systems. In this paper, feature recognition technology is applied and a novel islanding detection method is proposed. It can identify the features of inverter systems. The theoretical values of these features are defined as codebooks. The difference between the actual value of a feature and the codebook is defined as the quantizing distortion. When islanding happens, the sum of the quantizing distortions exceeds the threshold value. Thus, islanding can be detected. The non-detection zone can be avoided by choosing reasonable features. To accelerate the speed of detection and to avoid miscalculation, an active islanding detection method based on feature recognition technology is given. Compared to the active frequency or phase drift methods, the proposed active method can reduce the distortion of grid-current when the inverter works normally. The principles of the islanding detection method based on the feature recognition technology and the improved active method are both analyzed in detail. An 18 kVA DSP-based three-phase inverter with the SVPWM control strategy has been established and tested. Simulation and experimental results verify the theoretical analysis.
Facial expressions provide significant clues about one's emotional state; however, it always has been a great challenge for machine to recognize facial expressions effectively and reliably. In this paper, we report a method of feature-based adaptive motion energy analysis for recognizing facial expression. Our method optimizes the information gain heuristics of ID3 tree and introduces new approaches on (1) facial feature representation, (2) facial feature extraction, and (3) facial feature classification. We use minimal reasonable facial features, suggested by the information gain heuristics of ID3 tree, to represent the geometric face model. For the feature extraction, our method proceeds as follows. Features are first detected and then carefully "selected." Feature "selection" is finding the features with high variability for differentiating features with high variability from the ones with low variability, to effectively estimate the feature's motion pattern. For each facial feature, motion analysis is performed adaptively. That is, each facial feature's motion pattern (from the neutral face to the expressed face) is estimated based on its variability. After the feature extraction is done, the facial expression is classified using the ID3 tree (which is built from the 1728 possible facial expressions) and the test images from the JAFFE database. The proposed method excels and overcomes the problems aroused by previous methods. First of all, it is simple but effective. Our method effectively and reliably estimates the expressive facial features by differentiating features with high variability from the ones with low variability. Second, it is fast by avoiding complicated or time-consuming computations. Rather, it exploits few selected expressive features' motion energy values (acquired from intensity-based threshold). Lastly, our method gives reliable recognition rates with overall recognition rate of 77%. The effectiveness of the proposed method will be demonstrated from the experimental results.
The Transactions of the Korean Institute of Power Electronics
/
v.27
no.4
/
pp.332-338
/
2022
This study proposes a battery state-of-health estimation method by applying a feature extraction technique. The technique that can improve estimation performance is the process of identifying and extracting meaningful data. To apply a data-driven-based aging state estimation method to batteries, health indicators are used as training data. However, limitations occur in extracting health indicators from charge/discharge cycles. This study proposes a deep-learning-based battery state-of-health estimation method that applies feature extraction techniques to compensate for this problem. According to the performance evaluation result of the proposed method, it has a low estimation error of 0.3887% based on an absolute error evaluation method.
Proceedings of the Korean Society of Machine Tool Engineers Conference
/
1999.10a
/
pp.544-548
/
1999
This study is about development of Feature-based Solid Modeling system in integrated CAD/CAM environment. Parasolid modeling kernel and HOOPS/3D graphics library was used to develop this system in PC level. System feature library was defined using both procedural and declarative approach method. The raw stock is created by boolean operator using design primitives, and a part is designed that pre-defined feature is removed from the raw stock. This method is called "DSG(Destructive Solid Geometry)" and basic constructive operator of this system. This is not complete system and only the first step to develop Feature-based Solid Modeling System using Parasolid. We will add more powerful functionality and flexible GUI in Windows.n Windows.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.13
no.6
/
pp.63-69
/
2013
A feature-based image recognition method, using features of an object, can be performed faster than a template matching technique. Invariant feature-based panoramic image generation, an application of image recognition, requires large amount of time to match features between two images. This paper proposes a speed-up method of feature matching using feature strength information. Our algorithm extracts features in images, computes their feature strength information, and selects strong features points which are used to match the selected features. The strong features can be referred to as meaningful ones than the weak features. In the experiments, it was shown that our method speeded up over 40% of processing time than the technique without using feature strength information.
This paper presents an efficient and automatic color and motion feature extraction algorithm for content-based MPEG-l video retrieval. Based on the proposed method. a video retrieval system is implemented. For color feature. the proposed algorithm considers dynamic color iRformation in video data, and thereby can overcome the limits of the previous key-frame based method. For motion feature, we utilize the motion vector in MPEG-l video with color information. and extract the color-motion feature. The proposed algorithm can solve the weakness of the previous location based motion feature method. Finally. the proposed method is evaluated within the implemented video retrieval system.
Journal of the Institute of Convergence Signal Processing
/
v.15
no.2
/
pp.37-41
/
2014
The vector Taylor series (VTS) based method usually employs clean speech Hidden Markov Models (HMMs) when compensating speech feature vectors or adapting the parameters of trained HMMs. It is well-known that noisy speech HMMs trained by the Multi-condition TRaining (MTR) and the Multi-Model-based Speech Recognition framework (MMSR) method perform better than the clean speech HMM in noisy speech recognition. In this paper, we propose a method to use the noise-adapted HMMs in the VTS-based speech feature compensation method. We derived a novel mathematical relation between the train and the test noisy speech feature vector in the log-spectrum domain and the VTS is used to estimate the statistics of the test noisy speech. An iterative EM algorithm is used to estimate train noisy speech from the test noisy speech along with noise parameters. The proposed method was applied to the noise-adapted HMMs trained by the MTR and MMSR and could reduce the relative word error rate significantly in the noisy speech recognition experiments on the Aurora 2 database.
Korean Journal of Computational Design and Engineering
/
v.2
no.3
/
pp.142-149
/
1997
This study is intended to develop a Feature based modeler. It is difficult to integrate CAD and CAM/CAPP with information that is given only by a conventional CAD system. Therefore a lot of studies have concentrated on a Feature based CAD system. But conventional Feature based modelers have had limitation on providing sufficient information related to Feature interaction. If a Feature based modeler is to be used in assembly simulation, a new Feature-based modeling method needs to be developed. Also to support collision detection between parts, we have to handle Feature interaction systematically. Therefore we suggest Cell data structure which handles interaction of Features by volume. The volume created by Feature interaction is saved as a Cell. With the Cell structure we solve problems involved with Feature interaction. This study shows how the Cell data structure can manage Feature interaction and give enough information in assembly simulation.
In this paper, we investigated a method for feature - based classification to develop software which is suitable to the classification of high resolution satellite imagery . So, we developed related algorithm and designed user interfaces of convenience, considering various elements require for the feature - based classification. The software was tested with eCognition software which is unique commercial software for feature - based classification.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.01a
/
pp.418-422
/
2009
Generally, algorithms for generating disparity maps can be clssified into two categories: region-based method and feature-based method. The main focus of this research is to generate a disparity map with an accuracy depth information for 3-dimensional reconstructing. Basically, the region-based method and the feature-based method are simultaneously included in the proposed algorithm, so that the existing problems including false matching and occlusion can be effectively solved. As a region-based method, regions of false matching are extracted by the proposed MMAD(Modified Mean of Absolute Differences) algorithm which is a modification of the existing MAD(Mean of Absolute Differences) algorithm. As a feature-based method, the proposed method eliminates false matching errors by calculating the vector with SIFT and compensates the occluded regions by using a pair of adjacent SIFT matching points, so that the errors are reduced and the disparity map becomes more accurate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.