• Title/Summary/Keyword: Feature-based Method

Search Result 3,731, Processing Time 0.037 seconds

Anti-Spoofing Method for Iris Recognition by Combining the Optical and Textural Features of Human Eye

  • Lee, Eui Chul;Son, Sung Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2424-2441
    • /
    • 2012
  • In this paper, we propose a fake iris detection method that combines the optical and textural features of the human eye. To extract the optical features, we used dual Purkinje images that were generated on the anterior cornea and the posterior lens surfaces based on an analytic model of the human eye's optical structure. To extract the textural features, we measured the amount of change in a given iris pattern (based on wavelet decomposition) with regard to the direction of illumination. This method performs the following two procedures over previous researches. First, in order to obtain the optical and textural features simultaneously, we used five illuminators. Second, in order to improve fake iris detection performance, we used a SVM (Support Vector Machine) to combine the optical and textural features. Through combining the features, problems of single feature based previous works could be solved. Experimental results showed that the EER (Equal Error Rate) was 0.133%.

A Study on the Fingerprint Recognition Method using Neural Networks (신경회로망을 이용한 지문인식방법에 관한 연구)

  • Lee, Ju-Sang;Lee, Jae-Hyeon;Kang, Seong-In;Kim, IL;Lee, Sang-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.287-290
    • /
    • 2000
  • In this paper we have presented approach to automatic the direction feature vectors detection, which detects the ridge line directly in gray scale images. In spite of a greater conceptual complexity, we have shown that our technique has less computational complexity than the complexity of the techniques which require binarization and thinning. Afterwards a various direction feature vectors is changed four direction feature vectors. In this paper used matching method is four direction feature vectors based matching. This four direction feature vectors consist feature patterns in fingerprint images. This feature patterns were used for identification of individuals inputed multilayer Neural Networks(NN) which has capability of excellent pattern identification.

  • PDF

Stereo Matching Method using Directional Feature Vector (방향성 특징벡터를 이용한 스테레오 정합 기법)

  • Moon, Chang-Gi;Jeon, Jong-Hyun;Ye, Chul-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.52-57
    • /
    • 2007
  • In this paper we proposed multi-directional matching windows combined by multi-dimensional feature vector matching, which uses not only intensity values but also multiple feature values, such as variance, first and second derivative of pixels. Multi-dimensional feature vector matching has the advantage of compensating the drawbacks of area-based stereo matching using one feature value, such as intensity. We define matching cost of a pixel by the minimum value among eight multi-dimensional feature vector distances of the pixels expanded in eight directions having the interval of 45 degrees. As best stereo matches, we determine the two points with the minimum matching cost within the disparity range. In the experiment we used aerial imagery and IKONOS satellite imagery and obtained more accurate matching results than that of conventional matching method.

RFA: Recursive Feature Addition Algorithm for Machine Learning-Based Malware Classification

  • Byeon, Ji-Yun;Kim, Dae-Ho;Kim, Hee-Chul;Choi, Sang-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.61-68
    • /
    • 2021
  • Recently, various technologies that use machine learning to classify malicious code have been studied. In order to enhance the effectiveness of machine learning, it is most important to extract properties to identify malicious codes and normal binaries. In this paper, we propose a feature extraction method for use in machine learning using recursive methods. The proposed method selects the final feature using recursive methods for individual features to maximize the performance of machine learning. In detail, we use the method of extracting the best performing features among individual feature at each stage, and then combining the extracted features. We extract features with the proposed method and apply them to machine learning algorithms such as Decision Tree, SVM, Random Forest, and KNN, to validate that machine learning performance improves as the steps continue.

Feature-Vector Normalization for SVM-based Music Genre Classification (SVM에 기반한 음악 장르 분류를 위한 특징벡터 정규화 방법)

  • Lim, Shin-Cheol;Jang, Sei-Jin;Lee, Seok-Pil;Kim, Moo-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, Mel-Frequency Cepstral Coefficient (MFCC), Decorrelated Filter Bank (DFB), Octave-based Spectral Contrast (OSC), Zero-Crossing Rate (ZCR), and Spectral Contract/Roll-Off are combined as a set of multiple feature-vectors for the music genre classification system based on the Support Vector Machine (SVM) classifier. In the conventional system, feature vectors for the entire genre classes are normalized for the SVM model training and classification. However, in this paper, selected feature vectors that are compared based on the One-Against-One (OAO) SVM classifier are only used for normalization. Using OSC as a single feature-vector and the multiple feature-vectors, we obtain the genre classification rates of 60.8% and 77.4%, respectively, with the conventional normalization method. Using the proposed normalization method, we obtain the increased classification rates by 8.2% and 3.3% for OSC and the multiple feature-vectors, respectively.

Feature Vector Processing for Speech Emotion Recognition in Noisy Environments (잡음 환경에서의 음성 감정 인식을 위한 특징 벡터 처리)

  • Park, Jeong-Sik;Oh, Yung-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • This paper proposes an efficient feature vector processing technique to guard the Speech Emotion Recognition (SER) system against a variety of noises. In the proposed approach, emotional feature vectors are extracted from speech processed by comb filtering. Then, these extracts are used in a robust model construction based on feature vector classification. We modify conventional comb filtering by using speech presence probability to minimize drawbacks due to incorrect pitch estimation under background noise conditions. The modified comb filtering can correctly enhance the harmonics, which is an important factor used in SER. Feature vector classification technique categorizes feature vectors into either discriminative vectors or non-discriminative vectors based on a log-likelihood criterion. This method can successfully select the discriminative vectors while preserving correct emotional characteristics. Thus, robust emotion models can be constructed by only using such discriminative vectors. On SER experiment using an emotional speech corpus contaminated by various noises, our approach exhibited superior performance to the baseline system.

  • PDF

Speech Enhancement Based on Feature Compensation for Independently Applying to Different Types of Speech Recognition Systems (이기종 음성 인식 시스템에 독립적으로 적용 가능한 특징 보상 기반의 음성 향상 기법)

  • Kim, Wooil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2367-2374
    • /
    • 2014
  • This paper proposes a speech enhancement method which can be independently applied to different types of speech recognition systems. Feature compensation methods are well known to be effective as a front-end algorithm for robust speech recognition in noisy environments. The feature types and speech model employed by the feature compensation methods should be matched with ones of the speech recognition system for their effectiveness. However, they cannot be successfully employed by the speech recognition with "unknown" specification, such as a commercialized speech recognition engine. In this paper, a speech enhancement method is proposed, which is based on the PCGMM-based feature compensation method. The experimental results show that the proposed method significantly outperforms the conventional front-end algorithms for unknown speech recognition over various background noise conditions.

Texture-Spatial Separation based Feature Distillation Network for Single Image Super Resolution (단일 영상 초해상도를 위한 질감-공간 분리 기반의 특징 분류 네트워크)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, I proposes a method for performing single image super resolution by separating texture-spatial domains and then classifying features based on detailed information. In CNN (Convolutional Neural Network) based super resolution, the complex procedures and generation of redundant feature information in feature estimation process for enhancing details can lead to quality degradation in super resolution. The proposed method reduced procedural complexity and minimizes generation of redundant feature information by splitting input image into two channels: texture and spatial. In texture channel, a feature refinement process with step-wise skip connections is applied for detail restoration, while in spatial channel, a method is introduced to preserve the structural features of the image. Experimental results using proposed method demonstrate improved performance in terms of PSNR and SSIM evaluations compared to existing super resolution methods, confirmed the enhancement in quality.

Simulation Study for Feature Identification of Dynamic Medical Image Reconstruction Technique Based on Singular Value Decomposition (특이값분해 기반 동적의료영상 재구성기법의 특징 파악을 위한 시뮬레이션 연구)

  • Kim, Do-Hui;Jung, YoungJin
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.119-130
    • /
    • 2019
  • Positron emission tomography (PET) is widely used imaging modality for effective and accurate functional testing and medical diagnosis using radioactive isotopes. However, PET has difficulties in acquiring images with high image quality due to constraints such as the amount of radioactive isotopes injected into the patient, the detection time, the characteristics of the detector, and the patient's motion. In order to overcome this problem, we have succeeded to improve the image quality by using the dynamic image reconstruction method based on singular value decomposition. However, there is still some question about the characteristics of the proposed technique. In this study, the characteristics of reconstruction method based on singular value decomposition was estimated over computational simulation. As a result, we confirmed that the singular value decomposition based reconstruction technique distinguishes the images well when the signal - to - noise ratio of the input image is more than 20 decibels and the feature vector angle is more than 60 degrees. In addition, the proposed methode to estimate the characteristics of reconstruction technique can be applied to other spatio-temporal feature based dynamic image reconstruction techniques. The deduced conclusion of this study can be useful guideline to apply medical image into SVD based dynamic image reconstruction technique to improve the accuracy of medical diagnosis.

Model based Facial Expression Recognition using New Feature Space (새로운 얼굴 특징공간을 이용한 모델 기반 얼굴 표정 인식)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.309-316
    • /
    • 2010
  • This paper introduces a new model based method for facial expression recognition that uses facial grid angles as feature space. In order to be able to recognize the six main facial expression, proposed method uses a grid approach and therefore it establishes a new feature space based on the angles that each gird's edge and vertex form. The way taken in the paper is robust against several affine transformations such as translation, rotation, and scaling which in other approaches are considered very harmful in the overall accuracy of a facial expression recognition algorithm. Also, this paper demonstrates the process that the feature space is created using angles and how a selection process of feature subset within this space is applied with Wrapper approach. Selected features are classified by SVM, 3-NN classifier and classification results are validated with two-tier cross validation. Proposed method shows 94% classification result and feature selection algorithm improves results by up to 10% over the full set of feature.