• Title/Summary/Keyword: Feature vectors

Search Result 814, Processing Time 0.024 seconds

Shape-based Image Retrieval using VQ based Local Differential Invariants

  • Kim , Hyun-Sool;Shin, Dae-Kyu;Chung , Tae-Yun;Park , Sang-Hui
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.7-11
    • /
    • 2002
  • In this study, fur the shape-based image retrieval, a method using local differential invariants is proposed. This method calculates the differential invariant feature vector at every feature point extracted by Harris comer point detector. Then through vector quantization using LBG algorithm, all feature vectors are represented by a codebook index. All images are indexed by the histogram of codebook index, and by comparing the histograms the similarity between images is obtained. The proposed method is compared with the existing method by performing experiments for image database including various 1100 trademarks.

  • PDF

Multimodal Biometric Using a Hierarchical Fusion of a Person's Face, Voice, and Online Signature

  • Elmir, Youssef;Elberrichi, Zakaria;Adjoudj, Reda
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.555-567
    • /
    • 2014
  • Biometric performance improvement is a challenging task. In this paper, a hierarchical strategy fusion based on multimodal biometric system is presented. This strategy relies on a combination of several biometric traits using a multi-level biometric fusion hierarchy. The multi-level biometric fusion includes a pre-classification fusion with optimal feature selection and a post-classification fusion that is based on the similarity of the maximum of matching scores. The proposed solution enhances biometric recognition performances based on suitable feature selection and reduction, such as principal component analysis (PCA) and linear discriminant analysis (LDA), as much as not all of the feature vectors components support the performance improvement degree.

Fault Diagnosis of Wind Power Converters Based on Compressed Sensing Theory and Weight Constrained AdaBoost-SVM

  • Zheng, Xiao-Xia;Peng, Peng
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.443-453
    • /
    • 2019
  • As the core component of transmission systems, converters are very prone to failure. To improve the accuracy of fault diagnosis for wind power converters, a fault feature extraction method combined with a wavelet transform and compressed sensing theory is proposed. In addition, an improved AdaBoost-SVM is used to diagnose wind power converters. The three-phase output current signal is selected as the research object and is processed by the wavelet transform to reduce the signal noise. The wavelet approximation coefficients are dimensionality reduced to obtain measurement signals based on the theory of compressive sensing. A sparse vector is obtained by the orthogonal matching pursuit algorithm, and then the fault feature vector is extracted. The fault feature vectors are input to the improved AdaBoost-SVM classifier to realize fault diagnosis. Simulation results show that this method can effectively realize the fault diagnosis of the power transistors in converters and improve the precision of fault diagnosis.

A Study on A Biometric Bits Extraction Method of A Cancelable face Template based on A Helper Data (보조정보에 기반한 가변 얼굴템플릿의 이진화 방법의 연구)

  • Lee, Hyung-Gu;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.83-90
    • /
    • 2010
  • Cancelable biometrics is a robust and secure biometric recognition method using revocable biometric template in order to prevent possible compromisation of the original biometric data. In this paper, we present a new cancelable bits extraction method for the facial data. We use our previous cancelable feature template for the bits extraction. The adopted cancelable template is generated from two different original face feature vectors extracted from two different appearance-based approaches. Each element of feature vectors is re-ordered, and the scrambled features are added. With the added feature, biometric bits string is extracted using helper data based method. In this technique, helper data is generated using statistical property of the added feature vector, which can be easily replaced with straightforward revocation. Because, the helper data only utilizes partial information of the added feature, our proposed method is a more secure method than our previous one. The proposed method utilizes the helper data to reduce feature variance within the same individual and increase the distinctiveness of bit strings of different individuals for good recognition performance. For a security evaluation of our proposed method, a scenario in which the system is compromised by an adversary is also considered. In our experiments, we analyze the proposed method with respect to performance and security using the extended YALEB face database

Performance Improvement of Image Retrieval System by Presenting Query based on Human Perception (인간의 인지도에 근거한 질의를 통한 영상 검색의 성능 향상)

  • 유헌우;장동식;오근태
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.2
    • /
    • pp.158-165
    • /
    • 2003
  • Image similarity is often decided by computing the distance between two feature vectors. Unfortunately, the feature vector cannot always reflect the notion of similarity in human perception. Therefore, most current image retrieval systems use weights measuring the importance of each feature. In this paper new initial weight selection and update rules are proposed for image retrieval purpose. In order to obtain the purpose, database images are first divided into groups based on human perception and, inner and outer query are performed, and, then, optimal feature weights for each database images are computed through searching the group where the result images among retrieved images are belong. Experimental results on 2000 images show the performance of proposed algorithm.

Feature Extraction Based on GRFs for Facial Expression Recognition

  • Yoon, Myoong-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.23-31
    • /
    • 2002
  • In this paper we propose a new feature vector for recognition of the facial expression based on Gibbs distributions which are well suited for representing the spatial continuity. The extracted feature vectors are invariant under translation rotation, and scale of an facial expression imege. The Algorithm for recognition of a facial expression contains two parts: the extraction of feature vector and the recognition process. The extraction of feature vector are comprised of modified 2-D conditional moments based on estimated Gibbs distribution for an facial image. In the facial expression recognition phase, we use discrete left-right HMM which is widely used in pattern recognition. In order to evaluate the performance of the proposed scheme, experiments for recognition of four universal expression (anger, fear, happiness, surprise) was conducted with facial image sequences on Workstation. Experiment results reveal that the proposed scheme has high recognition rate over 95%.

  • PDF

Feature Selection for Abnormal Driving Behavior Recognition Based on Variance Distribution of Power Spectral Density

  • Nassuna, Hellen;Kim, Jaehoon;Eyobu, Odongo Steven;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.3
    • /
    • pp.119-127
    • /
    • 2020
  • The detection and recognition of abnormal driving becomes crucial for achieving safety in Intelligent Transportation Systems (ITS). This paper presents a feature extraction method based on spectral data to train a neural network model for driving behavior recognition. The proposed method uses a two stage signal processing approach to derive time-saving and efficient feature vectors. For the first stage, the feature vector set is obtained by calculating variances from each frequency bin containing the power spectrum data. The feature set is further reduced in the second stage where an intersection method is used to select more significant features that are finally applied for training a neural network model. A stream of live signals are fed to the trained model which recognizes the abnormal driving behaviors. The driving behaviors considered in this study are weaving, sudden braking and normal driving. The effectiveness of the proposed method is demonstrated by comparing with existing methods, which are Particle Swarm Optimization (PSO) and Convolution Neural Network (CNN). The experiments show that the proposed approach achieves satisfactory results with less computational complexity.

Comparison of feature parameters for emotion recognition using speech signal (음성 신호를 사용한 감정인식의 특징 파라메터 비교)

  • 김원구
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.371-377
    • /
    • 2003
  • In this paper, comparison of feature parameters for emotion recognition using speech signal is studied. For this purpose, a corpus of emotional speech data recorded and classified according to the emotion using the subjective evaluation were used to make statical feature vectors such as average, standard deviation and maximum value of pitch and energy and phonetic feature such as MFCC parameters. In order to evaluate the performance of feature parameters speaker and context independent emotion recognition system was constructed to make experiment. In the experiments, pitch, energy parameters and their derivatives were used as a prosodic information and MFCC parameters and its derivative were used as phonetic information. Experimental results using vector quantization based emotion recognition system showed that recognition system using MFCC parameter and its derivative showed better performance than that using the pitch and energy parameters.

Feature Extraction Method Using the Bhattacharyya Distance (Bhattacharyya distance 기반 특징 추출 기법)

  • Choi, Eui-Sun;Lee, Chul-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.38-47
    • /
    • 2000
  • In pattern classification, the Bhattacharyya distance has been used as a class separability measure. Furthemore, it is recently reported that the Bhattacharyya distance can be used to estimate error of Gaussian ML classifier within 1-2% margin. In this paper, we propose a feature extraction method utilizing the Bhattacharyya distance. In the proposed method, we first predict the classification error with the error estimation equation based on the Bhauacharyya distance. Then we find the feature vector that minimizes the classification error using two search algorithms: sequential search and global search. Experimental reslts show that the proposed method compares favorably with conventional feature extraction methods. In addition, it is possible to determine how man, feature vectors arc needed for achieving the same classification accuracy as in the original space.

  • PDF

A study on local facial features using LDP (LDP를 이용한 지역적 얼굴 특징 표현 방법에 관한 연구)

  • Cho, Young Tak;Jung, Woong Kyung;Ahn, Yong Hak;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.14 no.5
    • /
    • pp.49-56
    • /
    • 2014
  • In this paper, we proposed a method for representing local facial features based on LDP (Local Directional Pattern). To represent both PFF (Permanent Facial Features) and TFF (Transient Facial Features) effectively, the proposed method configure local facial feature vectors based on overlapped blocks for each facial feature in the forms of various size and shape. There are three advantages - it take advantages of geometric feature based method; it shows robustness about detection error using movement characteristics of each facial feature; and it shows reduced sampling error because maintain spatial information caused by block size variability. Proposed method shows better classification accuracy and reduced amount of calculation than existing methods.