• Title/Summary/Keyword: Feature space

Search Result 1,367, Processing Time 0.038 seconds

Content based image retrieval using maximum color

  • Park, Jong-An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.232-237
    • /
    • 2013
  • This paper presents image database retrieval based on maximum color occurrenceusing Hue, Saturation and Value (HSV) color space. Our system is based on color segmentation. We dividedthe image into n number of areas based on different selected ranges of hue and value, then each area is partitioned into m number of segments based on the number of pixels it contains, after this we calculated the maximumcolor occurrence in each segment and used its HSV value. This is used as a feature vector.

DESIGN AND FLIGHT SOFTWARE EMBEDDING OF KOMPSAT-2 SIMULATOR

  • Lee, Sang-Uk;Cho, Sung-Ki;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.97-106
    • /
    • 2002
  • The design feature of KOMPSAT-2 simulator based on object oriented design methodology in terms of unified modeling language (UML) has been discussed in this paper. Also, we present how to embed flight software into the simulator. Flight software em-bedding for KOMPSAT-2 simulator is compared to that of the KOMPSAT-1 simulator.

Scheme about extracting feature points by using edge information and Scale Space Filtering (에지정보와 Scale Space 필터를 이용한 특징점 추출 기법)

  • 김정학;박영태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.565-567
    • /
    • 2002
  • 동영상에서 특정 물체를 추적하기 위하여 여러 가지 알고리즘이 적용된다. 그 중에서 특징점을 추출하고 정합하여, 움직이고 있는 물체를 추적하는 방법을 소개한다. 특징점을 추출하는 방법 중에서 에지정보를 이용하는 방법과 직접 이미지에 접근하는 방식이 있다. 본 논문에서는 물체의 에지정보를 이용하여 특징점을 추출하는 기법을 제안한다. 널리 이용되고 있는 Canny Edge Detection(1) 알고리즘 이용, 에지를 얻게 되는데, 여기서 특징점 추출에 오류를 발생시킬 수 있는 경우에 대비하여 에지를 보정하고, 결과의 에지에서 특징 점을 추출한다. 보정된 에지정보에서 시작점, 끝점, 둘 이상의 에지가 모인 분기점과 굴곡률이 국부 최대인 지점을 찾아 특징점을 추출한다.

  • PDF

A Hybrid Efficient Feature Selection Model for High Dimensional Data Set based on KNHNAES (2013~2015) (KNHNAES (2013~2015) 에 기반한 대형 특징 공간 데이터집 혼합형 효율적인 특징 선택 모델)

  • Kwon, Tae il;Li, Dingkun;Park, Hyun Woo;Ryu, Kwang Sun;Kim, Eui Tak;Piao, Minghao
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.739-747
    • /
    • 2018
  • With a large feature space data, feature selection has become an extremely important procedure in the Data Mining process. But the traditional feature selection methods with single process may no longer fit for this procedure. In this paper, we proposed a hybrid efficient feature selection model for high dimensional data. We have applied our model on KNHNAES data set, the result shows that our model outperforms many existing methods in terms of accuracy over than at least 5%.

3D Face Recognition using Local Depth Information

  • 이영학;심재창;이태홍
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.818-825
    • /
    • 2002
  • Depth information is one of the most important factor for the recognition of a digital face image. Range images are very useful, when comparing one face with other faces, because of implicating depth information. As the processing for the whole fare produces a lot of calculations and data, face images ran be represented in terms of a vector of feature descriptors for a local area. In this paper, depth areas of a 3 dimensional(3D) face image were extracted by the contour line from some depth value. These were resampled and stored in consecutive location in feature vector using multiple feature method. A comparison between two faces was made based on their distance in the feature space, using Euclidian distance. This paper reduced the number of index data in the database and used fewer feature vectors than other methods. Proposed algorithm can be highly recognized for using local depth information and less feature vectors or the face.

Improved Bag of Visual Words Image Classification Using the Process of Feature, Color and Texture Information (특징, 색상 및 텍스처 정보의 가공을 이용한 Bag of Visual Words 이미지 자동 분류)

  • Park, Chan-hyeok;Kwon, Hyuk-shin;Kang, Seok-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.79-82
    • /
    • 2015
  • Bag of visual words(BoVW) is one of the image classification and retrieval methods, using feature point that automatical sorting and searching system by image feature vector of data base. The existing method using feature point shall search or classify the image that user unwanted. To solve this weakness, when comprise the words, include not only feature point but color information that express overall mood of image or texture information that express repeated pattern. It makes various searching possible. At the test, you could see the result compared between classified image using the words that have only feature point and another image that added color and texture information. New method leads to accuracy of 80~90%.

  • PDF

Contend Base Image Retrieval using Color Feature of Central Region and Optimized Comparing Bin (중앙 영역의 컬러 특징과 최적화된 빈 수를 이용한 내용기 반 영상검색)

  • Ryu, Eun-Ju;Song, Young-Jun;Park, Won-Bae;Ahn, Jae-Hyeong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.5
    • /
    • pp.581-586
    • /
    • 2004
  • In this paper, we proposed a content-based image retrieval using a color feature for central region and its optimized comparing bin method. Human's visual characteristic is influenced by existent of central object. So we supposed that object is centrally located in image and then we extract color feature at central region. When the background of image is simple, the retrieval result can be bad affected by major color of background. Our method overcome this drawback as a result of the human visual characteristic. After we transform Image into HSV color space, we extract color feature from the quantized image with 16 level. The experimental results showed that the method using the eight high rank bin is better than using the 16 bin The case which extracts the feature with image's central region was superior compare with the case which extracts the feature with the whole image about 5%.

Development of Feature Selection Method for Neural Network AE Signal Pattern Recognition and Its Application to Classification of Defects of Weld and Rotating Components (신경망 AE 신호 형상인식을 위한 특징값 선택법의 개발과 용접부 및 회전체 결함 분류에의 적용 연구)

  • Lee, Kang-Yong;Hwang, In-Bom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.46-53
    • /
    • 2001
  • The purpose of this paper is to develop a new feature selection method for AE signal classification. The neural network of back propagation algorithm is used. The proposed feature selection method uses the difference between feature coordinates in feature space. This method is compared with the existing methods such as Fisher's criterion, class mean scatter criterion and eigenvector analysis in terms of the recognition rate and the convergence speed, using the signals from the defects in welding zone of austenitic stainless steel and in the metal contact of the rotary compressor. The proposed feature selection methods such as 2-D and 3-D criteria showed better results in the recognition rate than the existing ones.

  • PDF

Edge Feature Extract CBIRS for Car Retrieval : CBIRS/EFI (차량 검색을 위한 측면 에지 특징 추출 내용기반 검색 : CBIRS/EFI)

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.75-82
    • /
    • 2010
  • The paper proposed CBIRS/EFI with contents based search technique using edge feature information of the object from image information of the object which is uncertain. In order to search specially efficiently case of partial image information of the object, we used the search technique which extracts outline information and color information in feature information of object. In order to experiment this, we extracted side edge feature information of the vehicle for feature information of the object after capture the car image of the underground garage. This is the system which applies a contents base search by the result which analyzes the image which extracts a feature, an original image to search and a last similar measurement result. This system compared in FE-CBIRS systems which are an existing feature extraction contents base image retrieval system and the function which improves the accuracy and an effectiveness of search rate was complemented. The performance appraisal of CBIRS/EFI systems applied edge extraction feature information and color information of the cars. And we compared a color feature search time, a shape characteristic search time and a search rate from the process which searches area feature information. We extracted the case 91.84% of car edge feature extraction rate. And a average search time of CBIRS/EFI is showing a difference of average 0.4-0.9 seconds than FE-CBIRS from vehicle. color search time, shape characteristic search time and similar search time. So, it was proven with the fact that is excellent.