• Title/Summary/Keyword: Feature space

Search Result 1,367, Processing Time 0.027 seconds

A Study on the Contents to Vitalize the Space for Making Traditional Gwangheemun A Tourism Resource (문화유산 광희문(光熙門)의 관광자원화를 위한 공간 활성화 콘텐츠 연구)

  • Kim, Ji Eun;Park, Eun Soo
    • Korea Science and Art Forum
    • /
    • v.23
    • /
    • pp.95-109
    • /
    • 2016
  • The background and objective of this study are as follows. Gwangheemun, one of the 4 small gates of Seoul Castle is a space to represent ordinary people and it is a valuable cultural heritage that shows the process of technical transition of fortification technology during Chosun Dynasty. It is a place that we can expect to play a role as a field where history and culture mix and communicate together. But currently, the environment and facilities around Gwangheemun have fallen behind and become old, so they need to be reorganized as their local feature is not shown distinctly. We need to vitalize the new traditional space that shows local feature. This study has drawn out the method, contents and the result of study like as follows. This study aims to establish an identity based on the historical and cultural backgrounds and suggest the contents to vitalize the space of Gwangheemun as a traditional cultural heritage. By this, this study aims to create a historical and cultural space where people can enjoy, eat and look around. Therefore, based on the historical and cultural feature, it gives an identity as moonlight street, and it has developed and suggested 5 contents to vitalize space: Gwangheemun maintenance, plan, castle restoration plan, village inside the castle, village outside the castle and fashion art street. Contents to vitalize space has a meaning as a specific developmen method of urban restoration, and we can expect to be used as a direction to develop the area to enhance the cultural quality of life of both inhabitants and visitors by forming the brand identity of surrounding area with traditional cultural heritage.

Robust 3D Model Hashing Scheme Based on Shape Feature Descriptor (형상 특징자 기반 강인성 3D 모델 해싱 기법)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.742-751
    • /
    • 2011
  • This paper presents a robust 3D model hashing dependent on key and parameter by using heat kernel signature (HKS), which is special shape feature descriptor, In the proposed hashing, we calculate HKS coefficients of local and global time scales from eigenvalue and eigenvector of Mesh Laplace operator and cluster pairs of HKS coefficients to 2D square cells and calculate feature coefficients by the distance weights of pairs of HKS coefficients on each cell. Then we generate the binary hash through binarizing the intermediate hash that is the combination of the feature coefficients and the random coefficients. In our experiment, we evaluated the robustness against geometrical and topological attacks and the uniqueness of key and model and also evaluated the model space by estimating the attack intensity that can authenticate 3D model. Experimental results verified that the proposed scheme has more the improved performance than the conventional hashing on the robustness, uniqueness, model space.

A Feature of Tidal Tails around Selective Globular Clusters in the Galactic Halo and Bulge

  • Chun, Sang-Hyun;Jung, Mi-Young;Han, Mi-Hwa;Chang, Cho-Rhong;Sohn, Young-Jong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.38.1-38.1
    • /
    • 2008
  • Tides caused by the Galactic gravitational field affect the current dynamical structure of globular clusters in the Galaxy. Indeed, the observed feature of tidal tails stretching beyond globular clusters' tidal radii provides a key information of interaction with the gravitational field of the Galaxy and kinematical orbit of the clusters, which can be an evidence of the merging scenario of the Galaxy formation and evolution. To find such a tidal feature, we have studied spatial density distribution of stars around five globular clusters in the Galactic halo and one cluster in the Galactic bulge, for which we have used wide-field deep photometric data of gri and JHK bands obtained from the MegaCam and WIRCam of the CFHT. Applying the statistical contrast filtering of field stars in the color-magnitude plane of detected stars around five halo clusters, we have found features of tidal tails for four clusters M53, M15, NGC 5053, and NGC 5466. The detected over-density tidal features are well aligned with the cluster's orbits and stretched into the direction of the Galactic center. Statistical analysis indicate that these tidal tails are believed to be cluster stars that have escaped due to the tidal effects to the clusters. A similar tidal feature to that of halo clusters is also detected for the bulge cluster NGC 6626, while the over-density feature seems to be extended into the Galactic plane rather than into the orbital direction and the Galactic center. Conclusively, our result adds further observational evidence of the merging scenario of the Galaxy formation and evolution.

  • PDF

A Background Segmentation and Feature Point Extraction Method of Human Motion Recognition (동작인식을 위한 배경 분할 및 특징점 추출 방법)

  • You, Hwi-Jong;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.11 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • In this paper, we propose a novel background segmentation and feature point extraction method of a human motion for the augmented reality game. First, our method transforms input image from RGB color space to HSV color space, then segments a skin colored area using double threshold of H, S value. And it also segments a moving area using the time difference images and then removes the noise of the area using the Hessian affine region detector. The skin colored area with the moving area is segmented as a human motion. Next, the feature points for the human motion are extracted by calculating the center point for each block in the previously obtained image. The experiments on various input images show that our method is capable of correct background segmentation and feature points extraction 12 frames per second.

Reliability improvement of nonlinear ultrasonic modulation based fatigue crack detection using feature-level data fusion

  • Lim, Hyung Jin;Kim, Yongtak;Sohn, Hoon;Jeon, Ikgeun;Liu, Peipei
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.683-696
    • /
    • 2017
  • In this study, the reliability of nonlinear ultrasonic modulation based fatigue crack detection is improved using a feature-level data fusion approach. When two ultrasonic inputs at two distinct frequencies are applied to a specimen with a fatigue crack, modulation components at the summation and difference of these two input frequencies appear. First, the spectral amplitudes of the modulation components and their spectral correlations are defined as individual features. Then, a 2D feature space is constructed by combining these two features, and the presence of a fatigue crack is identified in the feature space. The effectiveness of the proposed fatigue crack detection technique is experimentally validated through cyclic loading tests of aluminum plates, full-scale steel girders and a rotating shaft component. Subsequently, the improved reliability of the proposed technique is quantitatively investigated using receiver operating characteristic analysis. The uniqueness of this study lies in (1) improvement of nonlinear ultrasonic modulation based fatigue crack detection reliability using feature-level data fusion, (2) reference-free fatigue crack diagnosis without using the baseline data obtained from the intact condition of the structure, (3) application to full-scale steel girders and shaft component, and (4) quantitative investigation of the improved reliability using receiver operating characteristic analysis.

Implementation of Speech Recognizer using Relevance Vector Machine (RVM을 이용한 음성인식기의 구현)

  • Kim, Chang-Keun;Koh, Si-Young;Hur, Kang-In;Lee, Kwang-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1596-1603
    • /
    • 2007
  • In this paper, we experimented by three kind of method for feature parameter, training method and recognition algorithm of most suitable for speech recognition system and considered. We decided speech recognition system of most suitable through two kind of experiment after we make speech recognizer. First, we did an experiment about three kind of feature parameter to evaluate recognition performance of it in speech recognizer using existent MFCC and MFCC new feature parameter that change characteristic space using PCA and ICA. Second, we experimented recognition performance or HMM, SVM and RVM by studying data number. By an experiment until now, feature parameter by ICA showed performance improvement of average 1.5% than MFCC by high linear discrimination from characteristic space. RVM showed performance improvement of maximum 3.25% than HMM in an experiment by decrease of studying data. As such result, effective method for speech recognition system to propose in this paper derives feature parameters using ICA and un recognition using RVM.

Study on Co-Simulation Method of Dynamics and Guidance Algorithms for Strap-Down Image Tracker Using Unity3D (Unity3D를 이용한 스트랩 다운 영상 추적기의 동역학 및 유도 법칙 알고리즘의 상호-시뮬레이션 방법에 관한 연구)

  • Marin, Mikael;Kim, Taeho;Bang, Hyochoong;Cho, Hanjin;Cho, Youngki;Choi, Yonghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.911-920
    • /
    • 2018
  • In this study, we performed a study to track the angle between the guided weapon and the target by using the strap-down image seeker, and constructed a test bed that can simulate it visually. This paper describes a method to maintain high-performance feature distribution in the implementation of sparse feature tracking algorithm such as Lucas Kanade's optical flow algorithm for target tracking using image information. We have extended the feature tracking problem to the concept of feature management. To realize this, we constructed visual environment using Unity3D engine and developed image processing simulation using OpenCV. For the co-simulation, dynamic system modeling was performed with Matlab Simulink, the visual environment using Unity3D was constructed, and computer vision work using OpenCV was performed.

Human Gait Recognition Based on Spatio-Temporal Deep Convolutional Neural Network for Identification

  • Zhang, Ning;Park, Jin-ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.927-939
    • /
    • 2020
  • Gait recognition can identify people's identity from a long distance, which is very important for improving the intelligence of the monitoring system. Among many human features, gait features have the advantages of being remotely available, robust, and secure. Traditional gait feature extraction, affected by the development of behavior recognition, can only rely on manual feature extraction, which cannot meet the needs of fine gait recognition. The emergence of deep convolutional neural networks has made researchers get rid of complex feature design engineering, and can automatically learn available features through data, which has been widely used. In this paper,conduct feature metric learning in the three-dimensional space by combining the three-dimensional convolution features of the gait sequence and the Siamese structure. This method can capture the information of spatial dimension and time dimension from the continuous periodic gait sequence, and further improve the accuracy and practicability of gait recognition.

The Design of a Classifier Combining GA-based Feature Weighting Algorithm and Modified KNN Rule (GA를 이용한 특징 가중치 알고리즘과 Modified KNN규칙을 결합한 Classifier 설계)

  • Lee, Hee-Sung;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.162-164
    • /
    • 2004
  • This paper proposes a new classification system combining the adaptive feature weighting algorithm using the genetic algorithm and the modified KNN rule. GA is employed to choose the middle value of weights and weights of features for high performance of the system. The modified KNN rule is proposed to estimate the class of test pattern using adaptive feature space. Experiments with the unconstrained handwritten digit database of Concordia University in Canada are conducted to show the performance of the proposed method.

  • PDF

Use of Word Clustering to Improve Emotion Recognition from Short Text

  • Yuan, Shuai;Huang, Huan;Wu, Linjing
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.103-110
    • /
    • 2016
  • Emotion recognition is an important component of affective computing, and is significant in the implementation of natural and friendly human-computer interaction. An effective approach to recognizing emotion from text is based on a machine learning technique, which deals with emotion recognition as a classification problem. However, in emotion recognition, the texts involved are usually very short, leaving a very large, sparse feature space, which decreases the performance of emotion classification. This paper proposes to resolve the problem of feature sparseness, and largely improve the emotion recognition performance from short texts by doing the following: representing short texts with word cluster features, offering a novel word clustering algorithm, and using a new feature weighting scheme. Emotion classification experiments were performed with different features and weighting schemes on a publicly available dataset. The experimental results suggest that the word cluster features and the proposed weighting scheme can partly resolve problems with feature sparseness and emotion recognition performance.