• 제목/요약/키워드: Feature similarity

검색결과 592건 처리시간 0.027초

계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 2 - 절삭가공 특징형상 분할방식 이용 (Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 2 - Using Negative Feature Decomposition)

  • 김용세;강병구;정용희
    • 한국CDE학회논문집
    • /
    • 제9권1호
    • /
    • pp.51-61
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.

계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 1 - 볼록입체 분할방식 및 특징형상 분할방식 이용 (Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 1 - Using Convex Decomposition and Form Feature Decomposition)

  • 김용세;강병구;정용희
    • 한국CDE학회논문집
    • /
    • 제9권1호
    • /
    • pp.44-50
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the first one of the two companion papers, describes the similarity assessment methods using convex decomposition and FFD.

Semantic Word Categorization using Feature Similarity based K Nearest Neighbor

  • Jo, Taeho
    • Journal of Multimedia Information System
    • /
    • 제5권2호
    • /
    • pp.67-78
    • /
    • 2018
  • This article proposes the modified KNN (K Nearest Neighbor) algorithm which considers the feature similarity and is applied to the word categorization. The texts which are given as features for encoding words into numerical vectors are semantic related entities, rather than independent ones, and the synergy effect between the word categorization and the text categorization is expected by combining both of them with each other. In this research, we define the similarity metric between two vectors, including the feature similarity, modify the KNN algorithm by replacing the exiting similarity metric by the proposed one, and apply it to the word categorization. The proposed KNN is empirically validated as the better approach in categorizing words in news articles and opinions. The significance of this research is to improve the classification performance by utilizing the feature similarities.

A METHOD OF IMAGE DATA RETRIEVAL BASED ON SELF-ORGANIZING MAPS

  • Lee, Mal-Rey;Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.793-806
    • /
    • 2002
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps (SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called topological feature map. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data. and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. In topological feature map, there are empty nodes in which no image is classified. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

스케일-스페이스 필터링을 통한 특징점 추출 및 질감도 비교를 적용한 추적 알고리즘 (Feature point extraction using scale-space filtering and Tracking algorithm based on comparing texturedness similarity)

  • 박용희;권오석
    • 인터넷정보학회논문지
    • /
    • 제6권5호
    • /
    • pp.85-95
    • /
    • 2005
  • 본 논문에서는 시퀀스 이미지에서 스케일-스페이스 필터링을 통한 특징점 추출과 질감도(texturedness) 비교를 적용한 특징점 추적 알고리즘을 제안한다. 특징점을 추출하기 위해서 정의된 오퍼레이터를 이용하는데, 이때 설정되는 스케일 파라미터는 특징점 선정 및 위치 설정에 영향을 주게 되며, 특징점 추적 알고리즘의 성능과도 관계가 있다. 본 논문에서는 스케일-스페이스 필터링을 통한 특징점 선정 및 위치 설정 방안을 제시한다. 영상 시퀀스에서, 카메라 시점 변화 또는 물체의 움직임은 특징점 추적 윈도우내에 아핀 변환을 가지게 하는데, 대응점 추적을 위한 유사도 측정에 어려움을 준다. 본 논문에서는 Shi-Tomasi-Kanade 추적 알고리즘에 기반하여, 아핀 변환에 비교적 견실한 특징점의 질감도 비교를 수행하는 최적 대응점 탐색 방법을 제안한다.

  • PDF

Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

  • Xiaonan Li;Guimin Zhang;Qingbao Li;Ping Zhang;Zhifeng Chen;Jinjin Liu;Shudan Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2101-2123
    • /
    • 2023
  • Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

Evaluating the Contribution of Spectral Features to Image Classification Using Class Separability

  • Ye, Chul-Soo
    • 대한원격탐사학회지
    • /
    • 제36권1호
    • /
    • pp.55-65
    • /
    • 2020
  • Image classification needs the spectral similarity comparison between spectral features of each pixel and the representative spectral features of each class. The spectral similarity is obtained by computing the spectral feature vector distance between the pixel and the class. Each spectral feature contributes differently in the image classification depending on the class separability of the spectral feature, which is computed using a suitable vector distance measure such as the Bhattacharyya distance. We propose a method to determine the weight value of each spectral feature in the computation of feature vector distance for the similarity measurement. The weight value is determined by the ratio between each feature separability value to the total separability values of all the spectral features. We created ten spectral features consisting of seven bands of Landsat-8 OLI image and three indices, NDVI, NDWI and NDBI. For three experimental test sites, we obtained the overall accuracies between 95.0% and 97.5% and the kappa coefficients between 90.43% and 94.47%.

Continuous Conditional Random Field에 의한 인터넷 쇼핑몰 신규 고객등급 예측 (Prediction of New Customer's Degree of Loyalty of Internet Shopping Mall Using Continuous Conditional Random Field)

  • 안길승;허선
    • 대한산업공학회지
    • /
    • 제41권1호
    • /
    • pp.10-16
    • /
    • 2015
  • In this study, we suggest a method to predict probability distribution of a new customer's degree of loyalty using C-CRF that reflects the RFM score and similarity to the neighbors of the customer. An RFM score prediction model is introduced to construct the first feature function of C-CRF. Integrating demographical similarity, purchasing characteristic similarity and purchase history similarity, we make a unified similarity variable to configure the second feature function of C-CRF. Then parameters of each feature function are estimated and we train our C-CRF model by training data set and suggest a probabilistic distribution to estimate a new customer's degree of loyalty. An example is provided to illustrate our model.

AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템 (Robust Face Recognition System using AAM and Gabor Feature Vectors)

  • 김상훈;정수환;전승선;김재민;조성원;정선태
    • 한국콘텐츠학회논문지
    • /
    • 제7권2호
    • /
    • pp.1-10
    • /
    • 2007
  • 본 논문에서는 AAM(Active Appearance Model)과 가버 특징 벡터를 이용한 얼굴 인식 시스템을 제안한다. 가버 특징 벡터를 사용하는 대표적인 얼굴 인식 알고리즘인 EBGM(Elastic Bunch Graph Matching)은 가버 특징 벡터를 추출하기 위해 얼굴 특징점들의 검출을 필요로 한다. 그런데, EBGM에서 사용되는 얼굴 특징점 검출 방법은 가버젯 유사도에 기반하는데 이는 초기점에 민감하다. 잘못된 특징점 검출은 얼굴 인식에 영향을 미친다. AAM은 얼굴 특징점 검출에 효과적인 것으로 알려져 있다. 본 논문에서는 AAM으로 얼굴 특징점들을 대략적으로 추정하고 추정된 특징점들을 초기점으로 하여 가버젯 유사도 기반 특징점 검출방법으로 특징점 검출을 정교화하는 얼굴 특징점 검출 방법과 이에 기반한 얼굴 인식 시스템을 제안한다. 실험을 통해 제안된 특징점 검출 방법을 사용한 얼굴 인식 시스템이 EBGM과 같이 기존 가버젯 유사도만의 얼굴 특징점 검출을 이용한 얼굴 인식 시스템보다 더 나은 성능 개선을 보임을 실험을 통해 확인하였다.