• Title/Summary/Keyword: Feature selection algorithm

Search Result 336, Processing Time 0.027 seconds

A Study on Cluster Hierarchy Depth in Hierarchical Clustering (계층적 클러스터링에서 분류 계층 깊이에 관한 연구)

  • Jin, Hai-Nan;Lee, Shin-won;An, Dong-Un;Chung, Sung-Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.673-676
    • /
    • 2004
  • Fast and high-quality document clustering algorithms play an important role in providing data exploration by organizing large amounts of information into a small number of meaningful clusters. In particular, hierarchical clustering provide a view of the data at different levels, making the large document collections are adapted to people's instinctive and interested requires. Many papers have shown that the hierarchical clustering method takes good-performance, but is limited because of its quadratic time complexity. In contrast, K-means has a time complexity that is linear in the number of documents, but is thought to produce inferior clusters. Think of the factor of simpleness, high-quality and high-efficiency, we combine the two approaches providing a new system named CONDOR system [10] with hierarchical structure based on document clustering using K-means algorithm to "get the best of both worlds". The performance of CONDOR system is compared with the VIVISIMO hierarchical clustering system [9], and performance is analyzed on feature words selection of specific topics and the optimum hierarchy depth.

  • PDF

Study for Classification of Facial Expression using Distance Features of Facial Landmarks (얼굴 랜드마크 거리 특징을 이용한 표정 분류에 대한 연구)

  • Bae, Jin Hee;Wang, Bo Hyeon;Lim, Joon S.
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.613-618
    • /
    • 2021
  • Facial expression recognition has long been established as a subject of continuous research in various fields. In this paper, the relationship between each landmark is analyzed using the features obtained by calculating the distance between the facial landmarks in the image, and five facial expressions are classified. We increased data and label reliability based on our labeling work with multiple observers. In addition, faces were recognized from the original data and landmark coordinates were extracted and used as features. A genetic algorithm was used to select features that are relatively more helpful for classification. We performed facial recognition classification and analysis with the method proposed in this paper, which shows the validity and effectiveness of the proposed method.

A Pre-processing Process Using TadGAN-based Time-series Anomaly Detection (TadGAN 기반 시계열 이상 탐지를 활용한 전처리 프로세스 연구)

  • Lee, Seung Hoon;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.459-471
    • /
    • 2022
  • Purpose: The purpose of this study was to increase prediction accuracy for an anomaly interval identified using an artificial intelligence-based time series anomaly detection technique by establishing a pre-processing process. Methods: Significant variables were extracted by applying feature selection techniques, and anomalies were derived using the TadGAN time series anomaly detection algorithm. After applying machine learning and deep learning methodologies using normal section data (excluding anomaly sections), the explanatory power of the anomaly sections was demonstrated through performance comparison. Results: The results of the machine learning methodology, the performance was the best when SHAP and TadGAN were applied, and the results in the deep learning, the performance was excellent when Chi-square Test and TadGAN were applied. Comparing each performance with the papers applied with a Conventional methodology using the same data, it can be seen that the performance of the MLR was significantly improved to 15%, Random Forest to 24%, XGBoost to 30%, Lasso Regression to 73%, LSTM to 17% and GRU to 19%. Conclusion: Based on the proposed process, when detecting unsupervised learning anomalies of data that are not actually labeled in various fields such as cyber security, financial sector, behavior pattern field, SNS. It is expected to prove the accuracy and explanation of the anomaly detection section and improve the performance of the model.

Discrimination of neutrons and gamma-rays in plastic scintillator based on spiking cortical model

  • Bing-Qi Liu;Hao-Ran Liu;Lan Chang;Yu-Xin Cheng;Zhuo Zuo;Peng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3359-3366
    • /
    • 2023
  • In this study, a spiking cortical model (SCM) based n-g discrimination method is proposed. The SCM-based algorithm is compared with three other methods, namely: (i) the pulse-coupled neural network (PCNN), (ii) the charge comparison, and (iii) the zero-crossing. The objective evaluation criteria used for the comparison are the FoM-value and the time consumption of discrimination. Experimental results demonstrated that our proposed method outperforms the other methods significantly with the highest FoM-value. Specifically, the proposed method exhibits a 34.81% improvement compared with the PCNN, a 50.29% improvement compared with the charge comparison, and a 110.02% improvement compared with the zero-crossing. Additionally, the proposed method features the second-fastest discrimination time, where it is 75.67% faster than the PCNN, 70.65% faster than the charge comparison and 38.4% slower than the zero-crossing. Our study also discusses the role and change pattern of each parameter of the SCM to guide the selection process. It concludes that the SCM's outstanding ability to recognize the dynamic information in the pulse signal, improved accuracy when compared to the PCNN, and better computational complexity enables the SCM to exhibit excellent n-γ discrimination performance while consuming less time.

A Novel Classification Model for Employees Turnover Using Neural Network for Enhancing Job Satisfaction in Organizations

  • Tarig Mohamed Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.71-78
    • /
    • 2023
  • Employee turnover is one of the most important challenges facing modern organizations. It causes job experiences and skills such as distinguished faculty members in universities, rare-specialized doctors, innovative engineers, and senior administrators. HR analytics has enhanced the area of data analytics to an extent that institutions can figure out their employees' characteristics; where inaccuracy leads to incorrect decision making. This paper aims to develop a novel model that can help decision-makers to classify the problem of Employee Turnover. By using feature selection methods: Information Gain and Chi-Square, the most important four features have been extracted from the dataset. These features are over time, job level, salary, and years in the organization. As one of the important results of this research, these features should be planned carefully to keep organizations their employees as valuable assets. The proposed model based on machine learning algorithms. Classification algorithms were used to implement the model such as Decision Tree, SVM, Random Frost, Neuronal Network, and Naive Bayes. The model was trained and tested by using a dataset that consists of 1470 records and 25 features. To develop the research model, many experiments had been conducted to find the best one. Based on implementation results, the Neural Network algorithm is selected as the best one with an Accuracy of 84 percents and AUC (ROC) 74 percents. By validation mechanism, the model is acceptable and reliable to help origination decision-makers to manage their employees in a good manner.

Construction of a artificial levee line in river zones using LiDAR Data (라이다 자료를 이용한 하천지역 인공 제방선 추출)

  • Choung, Yun-Jae;Park, Hyeon-Cheol;Jo, Myung-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.185-185
    • /
    • 2011
  • Mapping of artificial levee lines, one of major tasks in river zone mapping, is critical to prevention of river flood, protection of environments and eco systems in river zones. Thus, mapping of artificial levee lines is essential for management and development of river zones. Coastal mapping including river zone mapping has been historically carried out using surveying technologies. Photogrammetry, one of the surveying technologies, is recently used technology for national river zone mapping in Korea. Airborne laser scanning has been used in most advanced countries for coastal mapping due to its ability to penetrate shallow water and its high vertical accuracy. Due to these advantages, use of LiDAR data in coastal mapping is efficient for monitoring and predicting significant topographic change in river zones. This paper introduces a method for construction of a 3D artificial levee line using a set of LiDAR points that uses normal vectors. Multiple steps are involved in this method. First, a 2.5-dimensional Delaunay triangle mesh is generated based on three nearest-neighbor points in the LiDAR data. Second, a median filtering is applied to minimize noise. Third, edge selection algorithms are applied to extract break edges from a Delaunay triangle mesh using two normal vectors. In this research, two methods for edge selection algorithms using hypothesis testing are used to extract break edges. Fourth, intersection edges which are extracted using both methods at the same range are selected as the intersection edge group. Fifth, among intersection edge group, some linear feature edges which are not suitable to compose a levee line are removed as much as possible considering vertical distance, slope and connectivity of an edge. Sixth, with all line segments which are suitable to constitute a levee line, one river levee line segment is connected to another river levee line segment with the end points of both river levee line segments located nearest horizontally and vertically to each other. After linkage of all the river levee line segments, the initial river levee line is generated. Since the initial river levee line consists of the LiDAR points, the pattern of the initial river levee line is being zigzag along the river levee. Thus, for the last step, a algorithm for smoothing the initial river levee line is applied to fit the initial river levee line into the reference line, and the final 3D river levee line is constructed. After the algorithm is completed, the proposed algorithm is applied to construct the 3D river levee line in Zng-San levee nearby Ham-Ahn Bo in Nak-Dong river. Statistical results show that the constructed river levee line generated using a proposed method has high accuracy in comparison to the ground truth. This paper shows that use of LiDAR data for construction of the 3D river levee line for river zone mapping is useful and efficient; and, as a result, it can be replaced with ground surveying method for construction of the 3D river levee line.

  • PDF

Estimate Saliency map based on Multi Feature Assistance of Learning Algorithm (다중 특징을 지원하는 학습 기반의 saliency map에 관한 연구)

  • Han, Hyun-Ho;Lee, Gang-Seong;Park, Young-Soo;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.6
    • /
    • pp.29-36
    • /
    • 2017
  • In this paper, we propose a method for generating improved saliency map by learning multiple features to improve the accuracy and reliability of saliency map which has similar result to human visual perception type. In order to overcome the inaccurate result of reverse selection or partial loss in color based salient area estimation in existing salience map generation, the proposed method generates multi feature data based on learning. The features to be considered in the image are analyzed through the process of distinguishing the color pattern and the region having the specificity in the original image, and the learning data is composed by the combination of the similar protrusion area definition and the specificity area using the LAB color space based color analysis. After combining the training data with the extrinsic information obtained from low level features such as frequency, color, and focus information, we reconstructed the final saliency map to minimize the inaccurate saliency area. For the experiment, we compared the ground truth image with the experimental results and obtained the precision-recall value.

Improving Efficiency of Food Hygiene Surveillance System by Using Machine Learning-Based Approaches (기계학습을 이용한 식품위생점검 체계의 효율성 개선 연구)

  • Cho, Sanggoo;Cho, Seung Yong
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.53-67
    • /
    • 2020
  • This study employees a supervised learning prediction model to detect nonconformity in advance of processed food manufacturing and processing businesses. The study was conducted according to the standard procedure of machine learning, such as definition of objective function, data preprocessing and feature engineering and model selection and evaluation. The dependent variable was set as the number of supervised inspection detections over the past five years from 2014 to 2018, and the objective function was to maximize the probability of detecting the nonconforming companies. The data was preprocessed by reflecting not only basic attributes such as revenues, operating duration, number of employees, but also the inspections track records and extraneous climate data. After applying the feature variable extraction method, the machine learning algorithm was applied to the data by deriving the company's risk, item risk, environmental risk, and past violation history as feature variables that affect the determination of nonconformity. The f1-score of the decision tree, one of ensemble models, was much higher than those of other models. Based on the results of this study, it is expected that the official food control for food safety management will be enhanced and geared into the data-evidence based management as well as scientific administrative system.

Short-Term Prediction of Vehicle Speed on Main City Roads using the k-Nearest Neighbor Algorithm (k-Nearest Neighbor 알고리즘을 이용한 도심 내 주요 도로 구간의 교통속도 단기 예측 방법)

  • Rasyidi, Mohammad Arif;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.121-131
    • /
    • 2014
  • Traffic speed is an important measure in transportation. It can be employed for various purposes, including traffic congestion detection, travel time estimation, and road design. Consequently, accurate speed prediction is essential in the development of intelligent transportation systems. In this paper, we present an analysis and speed prediction of a certain road section in Busan, South Korea. In previous works, only historical data of the target link are used for prediction. Here, we extract features from real traffic data by considering the neighboring links. After obtaining the candidate features, linear regression, model tree, and k-nearest neighbor (k-NN) are employed for both feature selection and speed prediction. The experiment results show that k-NN outperforms model tree and linear regression for the given dataset. Compared to the other predictors, k-NN significantly reduces the error measures that we use, including mean absolute percentage error (MAPE) and root mean square error (RMSE).

BAYES EMPIRICAL BAYES ESTIMATION OF A PROPORT10N UNDER NONIGNORABLE NONRESPONSE

  • Choi, Jai-Won;Nandram, Balgobin
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.2
    • /
    • pp.121-150
    • /
    • 2003
  • The National Health Interview Survey (NHIS) is one of the surveys used to assess the health status of the US population. One indicator of the nation's health is the total number of doctor visits made by the household members in the past year, There is a substantial nonresponse among the sampled households, and the main issue we address here is that the nonrespones mechanism should not be ignored because respondents and nonrespondents differ. It is standard practice to summarize the number of doctor visits by the binary variable of no doctor visit versus at least one doctor visit by a household for each of the fifty states and the District of Columbia. We consider a nonignorable nonresponse model that expresses uncertainty about ignorability through the ratio of odds of a household doctor visit among respondents to the odds of doctor visit among all households. This is a hierarchical model in which a nonignorable nonresponse model is centered on an ignorable nonresponse model. Another feature of this model is that it permits us to "borrow strength" across states as in small area estimation; this helps because some of the parameters are weakly identified. However, for simplicity we assume that the hyperparameters are fixed but unknown, and these hyperparameters are estimated by the EM algorithm; thereby making our method Bayes empirical Bayes. Our main result is that for some of the states the nonresponse mechanism can be considered non-ignorable, and that 95% credible intervals of the probability of a household doctor visit and the probability that a household responds shed important light on the NHIS.