• Title/Summary/Keyword: Feature point initialization

Search Result 4, Processing Time 0.017 seconds

Augmented Feature Point Initialization Method for Vision/Lidar Aided 6-DoF Bearing-Only Inertial SLAM

  • Yun, Sukchang;Lee, Byoungjin;Kim, Yeon-Jo;Lee, Young Jae;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1846-1856
    • /
    • 2016
  • This study proposes a novel feature point initialization method in order to improve the accuracy of feature point positions by fusing a vision sensor and a lidar. The initialization is a process that determines three dimensional positions of feature points through two dimensional image data, which has a direct influence on performance of a 6-DoF bearing-only SLAM. Prior to the initialization, an extrinsic calibration method which estimates rotational and translational relationships between a vision sensor and lidar using multiple calibration tools was employed, then the feature point initialization method based on the estimated extrinsic calibration parameters was presented. In this process, in order to improve performance of the accuracy of the initialized feature points, an iterative automatic scaling parameter tuning technique was presented. The validity of the proposed feature point initialization method was verified in a 6-DoF bearing-only SLAM framework through an indoor and outdoor tests that compare estimation performance with the previous initialization method.

Performance Simulation of Various Feature-Initialization Algorithms for Forward-Viewing Mono-Camera-Based SLAM (전방 모노카메라 기반 SLAM 을 위한 다양한 특징점 초기화 알고리즘의 성능 시뮬레이션)

  • Lee, Hun;Kim, Chul Hong;Lee, Tae-Jae;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.833-838
    • /
    • 2016
  • This paper presents a performance evaluation of various feature-initialization algorithms for forward-viewing mono-camera based simultaneous localization and mapping (SLAM), specifically in indoor environments. For mono-camera based SLAM, the position of feature points cannot be known from a single view; therefore, it should be estimated from a feature initialization method using multiple viewpoint measurements. The accuracy of the feature initialization method directly affects the accuracy of the SLAM system. In this study, four different feature initialization algorithms are evaluated in simulations, including linear triangulation; depth parameterized, linear triangulation; weighted nearest point triangulation; and particle filter based depth estimation algorithms. In the simulation, the virtual feature positions are estimated when the virtual robot, containing a virtual forward-viewing mono-camera, moves forward. The results show that the linear triangulation method provides the best results in terms of feature-position estimation accuracy and computational speed.

Face Recognition using Fisherface Method with Fuzzy Membership Degree (퍼지 소속도를 갖는 Fisherface 방법을 이용한 얼굴인식)

  • 곽근창;고현주;전명근
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.6
    • /
    • pp.784-791
    • /
    • 2004
  • In this study, we deal with face recognition using fuzzy-based Fisherface method. The well-known Fisherface method is more insensitive to large variation in light direction, face pose, and facial expression than Principal Component Analysis method. Usually, the various methods of face recognition including Fisherface method give equal importance in determining the face to be recognized, regardless of typicalness. The main point here is that the proposed method assigns a feature vector transformed by PCA to fuzzy membership rather than assigning the vector to particular class. In this method, fuzzy membership degrees are obtained from FKNN(Fuzzy K-Nearest Neighbor) initialization. Experimental results show better recognition performance than other methods for ORL and Yale face databases.

Detection of Pulmonary Region in Medical Images through Improved Active Control Model

  • Kwon Yong-Jun;Won Chul-Ho;Kim Dong-Hun;Kim Pil-Un;Park Il-Yong;Park Hee-Jun;Lee Jyung-Hyun;Kim Myoung-Nam;Cho Jin-HO
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.357-363
    • /
    • 2005
  • Active contour models have been extensively used to segment, match, and track objects of interest in computer vision and image processing applications, particularly to locate object boundaries. With conventional methods an object boundary can be extracted by controlling the internal energy and external energy based on energy minimization. However, this still leaves a number of problems, such as initialization and poor convergence in concave regions. In particular, a contour is unable to enter a concave region based on the stretching and bending characteristic of the internal energy. Therefore, this study proposes a method that controls the internal energy by moving the local perpendicular bisector point of each control point on the contour, and determines the object boundary by minimizing the energy relative to the external energy. Convergence at a concave region can then be effectively implemented as regards the feature of interest using the internal energy, plus several objects can be detected using a multi-detection method based on the initial contour. The proposed method is compared with other conventional methods through objective validation and subjective consideration. As a result, it is anticipated that the proposed method can be efficiently applied to the detection of the pulmonary parenchyma region in medical images.