• 제목/요약/키워드: Feature parameter

검색결과 535건 처리시간 0.021초

회전체 결함 진단을 위한 특징 파라미터 분석 (Feature Parameter Analysis for Rotor Fault Diagnosis)

  • 정래혁;채장범;이병학;이도환;이병곤
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.31-38
    • /
    • 2012
  • Rotor of rotating machinery is the highly damaged part. Fault of 7 different types was confirmed as the main causes of rotor damage from the pump failure history data in domestic and U.S. nuclear. For each fault types, simulation testing was performed and fault signals were collected form the sensors. To calculate the statistical parameters of time-domain & frequency-domain, measured signals were analyzed by using the discrete wavelet transform, fast fourier transform, statistical analysis. Total 84 parameters were obtained. And Effectiveness factor were used to evaluate the discrimination capacity of each parameter. From the effectiveness factor, RAW-P4/RAW-P7/WT2-NNL/WT2-EE/WT1-P1 showed high ranking. Finally, these parameters were selected as the feature parameters of intelligent fault diagnostics for rotor.

RVM을 이용한 음성인식기의 구현 (Implementation of Speech Recognizer using Relevance Vector Machine)

  • 김창근;고시영;허강인;이광석
    • 한국정보통신학회논문지
    • /
    • 제11권8호
    • /
    • pp.1596-1603
    • /
    • 2007
  • 본 논문에서는 음성인식 시스템을 구현함에 있어 중요한 특징 파라미터와 학습, 인식 알고리즘의 선택을 위한 제안을 하기 위하여 각각 세 가지의 방법을 조합하여 인식 실험을 수행하고 검토하였다. 두 종류의 실험을 통하여 하드웨어 장치로 구현할 경우 보다 효과적인 음성 인식 시스템을 제안한다. 첫 번째로는 특징 파라미터의 성능을 평가하기 위하여 기존의 MFCC와 MFCC를 PCA와 ICA를 이용하여 특징 공간을 변화시킨 새로운 특징 파라미터를 제안하여 총 3종류의 특징파라미터에 대한 인식 실험을 수행하였으며, 두 번째로는 학습데이터 수에 따른 HMM, SVM, RVM의 인식 성능을 실험하였다. 이상의 실험에 의하여 ICA에 의한 특징 파라미터가 특징 공간상에서의 높은 선형 분별성에 의해 MFCC와 비교하여 평균 1.5%의 성능향상을 확인할 수 있었으며 학습데이터의 감소에 따른 인식실험에서는 HMM과 비교하여 RVM에서 최고 3.25%의 성능향상을 확인하였다. 이에 근거하여 TI사의 DSP(TMS320C32)를 사용하여 음성 인식기를 구현하여 실시간으로 실험하여 시뮬레이션과 비교하였다. 이와 같은 결과로서 본 논문에서 제안하는 음성인식시스템을 위한 효과적인 방법은 ICA를 이용한 특징 파라미터를 추출하고 RVM을 이용하여 인식을 수행하는 것이라 판단한다.

Elastic net 기반 특징 선택을 적용한 fNIRS 기반 뇌-컴퓨터 인터페이스 데이터셋 분류 정확도 평가 (Assessment of Classification Accuracy of fNIRS-Based Brain-computer Interface Dataset Employing Elastic Net-Based Feature Selection)

  • 신재영
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권6호
    • /
    • pp.268-276
    • /
    • 2021
  • Functional near-infrared spectroscopy-based brain-computer interface (fNIRS-based BCI) has been receiving much attention. However, we are practically constrained to obtain a lot of fNIRS data by inherent hemodynamic delay. For this reason, when employing machine learning techniques, a problem due to the high-dimensional feature vector may be encountered, such as deteriorated classification accuracy. In this study, we employ an elastic net-based feature selection which is one of the embedded methods and demonstrate the utility of which by analyzing the results. Using the fNIRS dataset obtained from 18 participants for classifying brain activation induced by mental arithmetic and idle state, we calculated classification accuracies after performing feature selection while changing the parameter α (weight of lasso vs. ridge regularization). Grand averages of classification accuracy are 80.0 ± 9.4%, 79.3 ± 9.6%, 79.0 ± 9.2%, 79.7 ± 10.1%, 77.6 ± 10.3%, 79.2 ± 8.9%, and 80.0 ± 7.8% for the various values of α = 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, and 0.5, respectively, and are not statistically different from the grand average of classification accuracy estimated with all features (80.1 ± 9.5%). As a result, no difference in classification accuracy is revealed for all considered parameter α values. Especially for α = 0.5, we are able to achieve the statistically same level of classification accuracy with even 16.4% features of the total features. Since elastic net-based feature selection can be easily applied to other cases without complicated initialization and parameter fine-tuning, we can be looking forward to seeing that the elastic-based feature selection can be actively applied to fNIRS data.

SVM음성인식기 구현을 위한 강인한 특징 파라메터 (Robust Feature Parameter for Implementation of Speech Recognizer Using Support Vector Machines)

  • 김창근;박정원;허강인
    • 대한전자공학회논문지SP
    • /
    • 제41권3호
    • /
    • pp.195-200
    • /
    • 2004
  • 본 논문은 두 가지 비교 실험을 통하여 효과적 음성인식 시스템을 제안한다. 분별적 이진 패턴 분류기인 SVM(Support Vector Machines)은 특징 공간에서 비선형 경계를 찾아 분류하는 방법으로 적은 학습 데이터에서도 좋은 분류 성능을 나타낸다고 알려져 있다. 본 논문에서는 학습데이터 수에 따른 HMM(Hidden Markov Model)과 SVM의 인식 성능을 비교하고, 최적의 특징 파라메터를 선택하기 위해 SVM을 이용하여 주성분해석과 독립성분분석을 적용하여 MFCC(Mel Frequency Cepstrum Coefficient)의 특징 공간을 변화시키면서 각각의 인식 성능을 비교 검토하였다. 실험 결과 SVM은 HMM에 비해 적은 학습데이터에서도 높은 인식 성능을 보여주었고, 독립성분분석에 의한 특징 파라메터가 특징 공간상에서의 높은 선형 분별성에 의해 다른 특징 파라메터보다 인식 성능에서 우수함을 확인 할 수 있었다.

잡음환경에서 Teager Energy 기반의 전역 음성부재확률을 이용하는 음성검출 (Voice Activity Detection Using Global Speech Absence Probability Based on Teager Energy in Noisy Environments)

  • 박윤식;이상민
    • 대한전자공학회논문지SP
    • /
    • 제49권1호
    • /
    • pp.97-103
    • /
    • 2012
  • 본 논문에서는 잡음환경에서 효과적인 음성을 검출하기 위한 새로운 음성 검출 (VAD, voice activity detection) 알고리즘을 제안한다. 통계적 모델에 기반의 Likelihood ratio (LR)를 통하여 도출되는 전역 음성부재확률 (GSAP, global speech absence probability)은 음성검출을 위한 피쳐 (feature) 파라미터로 널리 적용되고 있다. 하지만 신호 대 잡음 비 (SNR, signal-to-noise ratio)가 낮은 잡음환경에서는 정확한 GSAP 추정이 어려운 문제점을 가지고 있다. 따라서 제안된 방법에서는 잡음환경에서 강인한 VAD 알고리즘을 위하여 Teager energy (TE) 기반의 GSAP를 피쳐 파라미터로 적용한다. 제안된 알고리즘은 기존의 방법과 객관적인 실험을 통해 비교 평가한 결과 다양한 배경잡음 환경에서 향상된 성능을 보였다.

특징점 병합과 카메라 외부 파라미터 추정 결과를 고려한 B-snake기반 차선 검출 (B-snake Based Lane Detection with Feature Merging and Extrinsic Camera Parameter Estimation)

  • 하상헌;김경환
    • 전자공학회논문지
    • /
    • 제50권1호
    • /
    • pp.215-224
    • /
    • 2013
  • 본 논문은 주행중 차량에 장착된 카메라의 자세 변화를 카메라 외부 파라미터의 변화로 간주하고, 이의 추정을 통하여 도로의 요철과 전방 도로의 기울기 변화 등에 강건한 차선 검출 알고리즘을 제안한다. 제안하는 알고리즘에서 차선은 실세계 좌표에서 좌우가 평행하고 고정된 폭을 가진다 가정하며, 카메라 움직임을 고려한 연속된 영상들의 병합된 특징맵에서 B-snake를 이용하여 차선 검출과 카메라 외부 파라미터 추정이 동시에 수행된다. 실험을 통하여 카메라 외부 파라미터에 영향을 주는 주행 도로 환경의 변화에 강건한 차선 검출 결과를 확인하였으며, 추정된 카메라 외부 파라미터의 정확성은 전방 차량에 대한 레이더 실측 거리와의 비교를 통해 확인했다.

핵형 분류를 위한 퍼지 멤버쉽 함수의 처리 (Computing of the Fuzzy Membership Function for Karyotype Classification)

  • 엄상희;남재현
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권6호
    • /
    • pp.1-8
    • /
    • 2006
  • 많은 연구자들이 자동 염색체 핵형 분류와 해석을 연구하고 있다. 현미경상의 이미지를 개개의 염색체로 자동 분류하기 위해서는 이미지 전처리 핵형 분류기 구현 등의 세부 절차가 필요하다. 이미지 전처리에서는 개개의 염색체 분리, 잡음 제거, 특징 파라미터 추출을 진행한다. 추출된 형태학적 특징 파라미터는 동원체 지수, 상대 길이비, 상대 면적비이다. 본 논문에서는 인간 염색체 핵형 분류를 위하여 퍼지 분류기가 사용되어졌다. 추출된 형태학적 특징 파라미터가 퍼지 분류기의 입력 파라미터로 사용되었다. 우리는 개개의 염색체 그룹에 대한 최적 퍼지 분류기를 위하여 멤버쉽 함수를 선택하는 것을 연구하였다.

  • PDF

한국어 숫자음 전화음성의 채널왜곡에 따른 특징파라미터의 변이 분석 및 인식실험 (Analysis of Feature Parameter Variation for Korean Digit Telephone Speech according to Channel Distortion and Recognition Experiment)

  • 정성윤;손종목;김민성;배건성
    • 대한음성학회지:말소리
    • /
    • 제43호
    • /
    • pp.179-188
    • /
    • 2002
  • Improving the recognition performance of connected digit telephone speech still remains a problem to be solved. As a basic study for it, this paper analyzes the variation of feature parameters of Korean digit telephone speech according to channel distortion. As a feature parameter for analysis and recognition MFCC is used. To analyze the effect of telephone channel distortion depending on each call, MFCCs are first obtained from the connected digit telephone speech for each phoneme included in the Korean digit. Then CMN, RTCN, and RASTA are applied to the MFCC as channel compensation techniques. Using the feature parameters of MFCC, MFCC+CMN, MFCC+RTCN, and MFCC+RASTA, variances of phonemes are analyzed and recognition experiments are done for each case. Experimental results are discussed with our findings and discussions

  • PDF

회전기계 결함신호 진단을 위한 신호처리 기술 개발 (Signal Processing Technology for Rotating Machinery Fault Signal Diagnosis)

  • 최병근;안병현;김용휘;이종명;이정훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.331-337
    • /
    • 2013
  • Acoustic Emission technique is widely applied to develop the early fault detection system, and the problem about a signal processing method for AE signal is mainly focused on. In the signal processing method, envelope analysis is a useful method to evaluate the bearing problems and Wavelet transform is a powerful method to detect faults occurred on rotating machinery. However, exact method for AE signal is not developed yet. Therefore, in this paper two methods which are Hilbert transform and DET for feature extraction. In addition, we evaluate the classification performance with varying the parameter from 2 to 15 for feature selection DET, 0.01 to 1.0 for the RBF kernel function of SVR, and the proposed algorithm achieved 94% classification accuracy with the parameter of the RBF 0.08, 12 feature selection.

  • PDF

불변 특징모델을 이용한 카메라 동작인수 측정 (Estimation of Camera Motion Parameter using Invariant Feature Models)

  • 차정희;이근수
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.191-201
    • /
    • 2005
  • 본 논문에서는 카메라의 뷰포인트에 무관한 효율적인 불변특징을 기반으로 카메라의 동작인수를 산출하는 방법을 제안한다. 기존연구에서 사용된 특징정보는 카메라의 뷰포인트에 따라 변하기 때문에 정보양이 증가하여 정확한 특징추출이 어렵다. 또한 카메라 외부인수 산출을 위해 사용되는 LM(Levenberg-Marquardt)방법은 정확하게 목표 값에 수렴하지만 작은 스텝크기로 최소화를 진행하므로 소요시간이 긴 단점이 있다. 따라서 본 논문에서는 뷰포인트에 무관한 불변특징 추출방법과 이 특징들을 이용하여 2D 호모그래피로 찾은 카메라 동작인수를 LM 방법의 초기값으로 사용, 정확성과 수렴도를 향상시키는 2단계 카메라 동작인수산출 방법을 제안한다. 제안하는 방법은 특징 추출단계, 정합 단계, 2단계 카메라 동작인수 산출단계로 구성된다. 실험에서는 다양한 실내영상으로 제안한 방법과 기존 방법을 비교, 분석함으로써 제안한 알고리즘의 우수성을 입증하였다.

  • PDF